NCERT Solutions for Class 9 Maths Chapter 8 Triangles Exercise 8.1 Solutions

Collegedunia Team logo

Collegedunia Team

Content Curator

NCERT Solutions for Class 9 Maths Chapter 8 Quadrilaterals Exercise 8.1 Solutions are based on different types of quadrilaterals, and their properties.

Download PDF: NCERT Solutions for Class 9 Maths Chapter 8 Exercise 8.1 Solutions

Check out NCERT Solutions for Class 9 Maths Chapter 8 Exercise 8.1 Solutions

Read More: NCERT Solutions For Class 9 Maths Chapter 8 Quadrilaterals

Exercise Solutions of Class 9 Maths Chapter 8 Quadrilaterals

Also check other Exercise Solutions of Class 9 Maths Chapter 8 Quadrilaterals

Also Check:

Also check:

CBSE X Related Questions

1.

Form the pair of linear equations for the following problems and find their solution by substitution method.

(i) The difference between two numbers is 26 and one number is three times the other. Find them.

(ii) The larger of two supplementary angles exceeds the smaller by 18 degrees. Find them.

(iii) The coach of a cricket team buys 7 bats and 6 balls for Rs 3800. Later, she buys 3 bats and 5 balls for Rs 1750. Find the cost of each bat and each ball.

(iv) The taxi charges in a city consist of a fixed charge together with the charge for the distance covered. For a distance of 10 km, the charge paid is Rs 105 and for a journey of 15 km, the charge paid is Rs 155. What are the fixed charges and the charge per km? How much does a person have to pay for travelling a distance of 25 km.

(v) A fraction becomes\(\frac{ 9}{11}\), if 2 is added to both the numerator and the denominator. If, 3 is added to both the numerator and the denominator it becomes \(\frac{5}{6}\). Find the fraction.

(vi) Five years hence, the age of Jacob will be three times that of his son. Five years ago, Jacob’s age was seven times that of his son. What are their present ages?

      2.

      Prove the following identities, where the angles involved are acute angles for which the expressions are defined:\(\frac{(\text{1 + tan² A})}{(\text{1 + cot² A})} = (\frac{\text{1 - tan A }}{\text{ 1 - cot A}})^²= \text{tan² A}\)

          3.

          The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, mean and mode of the data and compare them

          Monthly consumption 
          (in units)

           Number of consumers

          65 - 85 

          4

          85 - 105

          5

          105 - 125

          13

          125 - 145

          20

          145 - 165

          14

          165 - 185

          8

          185 - 205

          4

              4.
              If 3 cot A = 4, check whether \(\frac{(1-\text{tan}^2 A)}{(1+\text{tan}^2 A)}\) = cos2 A – sinA or not

                  5.
                  Which of the following are APs? If they form an AP, find the common difference d and write three more terms.
                  (i) 2, 4, 8, 16, . . . .
                  (ii) \(2, \frac{5}{2},3,\frac{7}{2}\), . . . .
                  (iii) – 1.2, – 3.2, – 5.2, – 7.2, . . . .
                  (iv) – 10, – 6, – 2, 2, . . .
                  (v) 3, \(3 + \sqrt{2} , 3 + 3\sqrt{2} , 3 + 3 \sqrt{2}\) . . . .
                  (vi) 0.2, 0.22, 0.222, 0.2222, . . . .
                  (vii) 0, – 4, – 8, –12, . . . .
                  (viii) \(\frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}\), . . . .
                  (ix) 1, 3, 9, 27, . . . .
                  (x) a, 2a, 3a, 4a, . . . .
                  (xi) a, \(a^2, a^3, a^4,\)  . . . .
                  (xii) \(\sqrt{2}, \sqrt{8} , \sqrt{18} , \sqrt {32}\) . . . .
                  (xiii) \(\sqrt {3}, \sqrt {6}, \sqrt {9} , \sqrt {12}\) . . . . .
                  (xiv) \(1^2 , 3^2 , 5^2 , 7^2\), . . . .
                  (xv) \(1^2 , 5^2, 7^2, 7^3\), . . . .

                      6.
                      Check whether \(6n\) can end with the digit \(0\) for any natural number \(n\).

                          Comments



                          No Comments To Show