NCERT Solutions for Class 10 Maths Chapter 2 Polynomials Exercise 2.2

Jasmine Grover logo

Jasmine Grover

Content Strategy Manager

NCERT Solutions for Class 10 Maths Chapter 2 Polynomials Exercise 2.2 covers different cases of the relationship between Zeroes and Coefficients of a Polynomial. The exercise has 2 questions with 6 cases each.

Download PDF: NCERT Solutions for Class 10 Maths Chapter 2 Exercise 2.2

Check out the solutions of Class 10 Maths NCERT solutions chapter 2 Polynomials Exercise 2.2

Read More: NCERT Solutions For Class 10 Maths Polynomials

Check out other exercise solutions of Class 10 Maths Chapter 2 Polynomials


Class 10 Chapter 2 Polynomials Topics:

CBSE Class 10 Maths Study Guides:

CBSE X Related Questions

1.
An umbrella has 8 ribs which are equally spaced (see Fig. 11.10). Assuming umbrella to be a flat circle of radius 45 cm, find the area between the two consecutive ribs of the umbrella.
An umbrella has 8 ribs which are equally spaced

      2.

      A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

          3.

          The lengths of 40 leaves of a plant are measured correct to the nearest millimetre, and the data obtained is represented in the following table :

          Length (in mm)

          Number of leaves

          118 - 126

          3

          127 - 135 

          5

          136 - 144

          9

          145 - 153

          12

          154 - 162

          5

          163 - 171

          4

          172 - 180

          2

          Find the median length of the leaves. 
          (Hint : The data needs to be converted to continuous classes for finding the median, since the formula assumes continuous classes. The classes then change to 117.5 - 126.5, 126.5 - 135.5, . . ., 171.5 - 180.5.)

              4.
              Which of the following are APs? If they form an AP, find the common difference d and write three more terms.
              (i) 2, 4, 8, 16, . . . .
              (ii) \(2, \frac{5}{2},3,\frac{7}{2}\), . . . .
              (iii) – 1.2, – 3.2, – 5.2, – 7.2, . . . .
              (iv) – 10, – 6, – 2, 2, . . .
              (v) 3, \(3 + \sqrt{2} , 3 + 3\sqrt{2} , 3 + 3 \sqrt{2}\) . . . .
              (vi) 0.2, 0.22, 0.222, 0.2222, . . . .
              (vii) 0, – 4, – 8, –12, . . . .
              (viii) \(\frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}\), . . . .
              (ix) 1, 3, 9, 27, . . . .
              (x) a, 2a, 3a, 4a, . . . .
              (xi) a, \(a^2, a^3, a^4,\)  . . . .
              (xii) \(\sqrt{2}, \sqrt{8} , \sqrt{18} , \sqrt {32}\) . . . .
              (xiii) \(\sqrt {3}, \sqrt {6}, \sqrt {9} , \sqrt {12}\) . . . . .
              (xiv) \(1^2 , 3^2 , 5^2 , 7^2\), . . . .
              (xv) \(1^2 , 5^2, 7^2, 7^3\), . . . .

                  5.
                  A vessel is in the form of an inverted cone. Its height is 8 cm and the radius of its top, which is open, is 5 cm. It is filled with water up to the brim. When lead shots, each of which is a sphere of radius 0.5 cm are dropped into the vessel, one-fourth of the water flows out. Find the number of lead shots dropped in the vessel.

                      6.

                      Prove the following identities, where the angles involved are acute angles for which the expressions are defined:\(\frac{(\text{1 + tan² A})}{(\text{1 + cot² A})} = (\frac{\text{1 - tan A }}{\text{ 1 - cot A}})^²= \text{tan² A}\)

                          Comments



                          No Comments To Show