NCERT Solutions for Class 11 Maths Chapter 10 Exercise 10.3

Collegedunia Team logo

Collegedunia Team

Content Curator

Class 11 Maths NCERT Solutions Chapter 10 Straight Lines Exercise 10.3 is based on forms of Equation of a Line. Following concepts are covered under this topic:

  • General Equation of a Line
  • Distance of a Point From a Line

Download PDF NCERT Solutions for Class 11 Maths Chapter 10 Straight Lines Exercise 10.3

Check out the solutions of Class 11 Maths NCERT solutions Chapter 10 Straight Lines Exercise 10.3

Read More: NCERT Solutions For Class 11 Maths Chapter 10 Straight Lines

Also check other Exercise Solutions of Class 11 Maths Chapter 10 Straight Lines

Also check:

Also check:

CBSE CLASS XII Related Questions

1.

If A=\(\begin{bmatrix}2&-1&1\\-1&2&-1\\1&-1&2\end{bmatrix}\)verify that A3-6A2+9A-4 I=0 and hence find A-1 

      2.

      Solve system of linear equations, using matrix method.
       x-y+2z=7
       3x+4y-5z=-5
       2x-y+3z=12

          3.

          Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta  &-sin\alpha \\   -sin\beta&cos\beta  &0 \\   sin\alpha cos\beta&sin\alpha\sin\beta  &cos\alpha  \end{vmatrix}\)

              4.

               If \(\frac{d}{dx}f(x) = 4x^3-\frac{3}{x^4}\) such that \(f(2)=0\), then \(f(x)\) is

                • \(x^4+\frac{1}{x^3}-\frac{129}{8}\)

                • \(x^3+\frac{1}{x^4}+\frac{129}{8}\)

                • \(x^4+\frac{1}{x^3}+\frac{129}{8}\)

                • \(x^3+\frac{1}{x^4}-\frac{129}{8}\)

                5.
                Let f: R→R be defined as f(x) = 3x. Choose the correct answer.

                  • f is one-one onto
                  • f is many-one onto
                  • f is one-one but not onto
                  • f is neither one-one nor onto

                  6.
                  If (i) A=\(\begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{bmatrix}\),then verify that A'A=I
                  (ii) A= \(\begin{bmatrix} \sin\alpha & \cos\alpha\\ -\cos \alpha & \sin\alpha \end{bmatrix}\),then verify that A'A=I

                      CBSE CLASS XII Previous Year Papers

                      Comments



                      No Comments To Show