NCERT Solutions for Class 11 Maths Chapter 10 Exercise 10.1

Collegedunia Team logo

Collegedunia Team

Content Curator

Class 11 Maths NCERT Solutions Chapter 10 Straight Lines Exercise 10.1 is based on the following concepts:

  • Slope of a line when coordinates of any two points on the line are given
  • Conditions for parallelism and perpendicularity of lines in terms of their slopes
  • Angle between two lines
  • Collinearity of three points

Download PDF NCERT Solutions for Class 11 Maths Chapter 10 Straight Lines Exercise 10.1

Check out the solutions of Class 11 Maths NCERT solutions Chapter 10 Straight Lines Exercise 10.1

Read More: NCERT Solutions For Class 11 Maths Chapter 10 Straight Lines

Also check other Exercise Solutions of Class 11 Maths Chapter 10 Straight Lines

Also check:

Also check:

CBSE CLASS XII Related Questions

1.
For what values of x,\(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\)\(\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 & 1 \\1&0&2 \end{bmatrix}\)\(\begin{bmatrix} 0 \\2\\x\end{bmatrix}\)=O?

      2.
      Find the inverse of each of the matrices,if it exists. \(\begin{bmatrix} 2 &  3\\ 5 & 7 \end{bmatrix}\)

          3.

          Let A=\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\),show that(aI+bA)n=anI+nan-1bA,where I is the identity matrix of order 2 and n∈N

              4.
              If A'= \(\begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 &1 \end{bmatrix}\)\(\begin{bmatrix}  -1 & 2 & 1 \\ 1 &2 & 3\end{bmatrix}\) , then verify that 
              (i) \((A+B)'=A'+B' \)
              (ii) \((A-B)'=A'-B'\)

                  5.
                  Find the inverse of each of the matrices,if it exists \(\begin{bmatrix} 2 & 1 \\ 7 & 4  \end{bmatrix}\)

                      6.
                      Find the inverse of each of the matrices, if it exists. \(\begin{bmatrix} 1 &  3\\ 2 & 7\end{bmatrix}\)

                          CBSE CLASS XII Previous Year Papers

                          Comments



                          No Comments To Show