NCERT Solutions for Class 11 Maths Chapter 10 Exercise 10.2

Collegedunia Team logo

Collegedunia Team

Content Curator

Class 11 Maths NCERT Solutions Chapter 10 Straight Lines Exercise 10.2 is based on forms of Equation of a Line. Following concepts are covered under this topic:

  • Horizontal and vertical lines
  • Point-slope form
  • Two-point form
  • Slope-intercept form

Download PDF NCERT Solutions for Class 11 Maths Chapter 10 Straight Lines Exercise 10.2

Check out the solutions of Class 11 Maths NCERT solutions Chapter 10 Straight Lines Exercise 10.2

Read More: NCERT Solutions For Class 11 Maths Chapter 10 Straight Lines

Also check other Exercise Solutions of Class 11 Maths Chapter 10 Straight Lines

Also check:

Also check:

CBSE CLASS XII Related Questions

1.

If A=\(\begin{bmatrix}2&-1&1\\-1&2&-1\\1&-1&2\end{bmatrix}\)verify that A3-6A2+9A-4 I=0 and hence find A-1 

      2.
      For what values of x,\(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\)\(\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 & 1 \\1&0&2 \end{bmatrix}\)\(\begin{bmatrix} 0 \\2\\x\end{bmatrix}\)=O?

          3.

           If \(\frac{d}{dx}f(x) = 4x^3-\frac{3}{x^4}\) such that \(f(2)=0\), then \(f(x)\) is

            • \(x^4+\frac{1}{x^3}-\frac{129}{8}\)

            • \(x^3+\frac{1}{x^4}+\frac{129}{8}\)

            • \(x^4+\frac{1}{x^3}+\frac{129}{8}\)

            • \(x^3+\frac{1}{x^4}-\frac{129}{8}\)

            4.
            By using the properties of definite integrals, evaluate the integral: \(∫_0^π log(1+cosx)dx\)

                5.
                If A'= \(\begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 &1 \end{bmatrix}\)\(\begin{bmatrix}  -1 & 2 & 1 \\ 1 &2 & 3\end{bmatrix}\) , then verify that 
                (i) \((A+B)'=A'+B' \)
                (ii) \((A-B)'=A'-B'\)

                    6.
                    Find the inverse of each of the matrices,if it exists \(\begin{bmatrix} 2 & 1 \\ 7 & 4  \end{bmatrix}\)

                        CBSE CLASS XII Previous Year Papers

                        Comments



                        No Comments To Show