NCERT Solutions for Class 11 Maths Chapter 9 Exercise 9.4

Collegedunia Team logo

Collegedunia Team

Content Curator

Class 11 Maths NCERT Solutions Chapter 9 Sequence and Series Exercise 9.4 is based on Sum to n Terms of Special Series. 

Download PDF NCERT Solutions for Class 11 Maths Chapter 9 Sequence and Series Exercise 9.4

Check out the solutions of Class 11 Maths NCERT solutions Chapter 9 Sequence and Series Exercise 9.4 

Read More: NCERT Solutions For Class 11 Maths Chapter 9 Sequence and Series

Also check other Exercise Solutions of Class 11 Maths Chapter 9 Sequence and Series

Also check:

Also check:

CBSE CLASS XII Related Questions

1.
Find the inverse of each of the matrices,if it exists \(\begin{bmatrix} 2 & 1 \\ 7 & 4  \end{bmatrix}\)

      2.
      For what values of x,\(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\)\(\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 & 1 \\1&0&2 \end{bmatrix}\)\(\begin{bmatrix} 0 \\2\\x\end{bmatrix}\)=O?

          3.
          By using the properties of definite integrals, evaluate the integral: \(∫_0^π log(1+cosx)dx\)

              4.

              Let A=\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\),show that(aI+bA)n=anI+nan-1bA,where I is the identity matrix of order 2 and n∈N

                  5.
                  Find the inverse of each of the matrices,if it exists. \(\begin{bmatrix} 2 &  3\\ 5 & 7 \end{bmatrix}\)

                      6.

                       If \(\frac{d}{dx}f(x) = 4x^3-\frac{3}{x^4}\) such that \(f(2)=0\), then \(f(x)\) is

                        • \(x^4+\frac{1}{x^3}-\frac{129}{8}\)

                        • \(x^3+\frac{1}{x^4}+\frac{129}{8}\)

                        • \(x^4+\frac{1}{x^3}+\frac{129}{8}\)

                        • \(x^3+\frac{1}{x^4}-\frac{129}{8}\)

                        CBSE CLASS XII Previous Year Papers

                        Comments



                        No Comments To Show