NCERT Solutions for Class 11 Maths Chapter 9 Miscellaneous Exercises

Collegedunia Team logo

Collegedunia Team

Content Curator

Class 11 Maths NCERT Solutions Chapter 9 Sequence and Series Miscellaneous Exercises is based on the following concepts:

Download PDF NCERT Solutions for Class 11 Maths Chapter 9 Sequence and Series Miscellaneous Exercises

Check out the solutions of Class 11 Maths NCERT solutions Chapter 9 Sequence and Series Miscellaneous Exercises

Read More: NCERT Solutions For Class 11 Maths Chapter 9 Sequence and Series

Also check other Exercise Solutions of Class 11 Maths Chapter 9 Sequence and Series

Also check:

Also check:

CBSE CLASS XII Related Questions

1.

 If \(\frac{d}{dx}f(x) = 4x^3-\frac{3}{x^4}\) such that \(f(2)=0\), then \(f(x)\) is

    • \(x^4+\frac{1}{x^3}-\frac{129}{8}\)

    • \(x^3+\frac{1}{x^4}+\frac{129}{8}\)

    • \(x^4+\frac{1}{x^3}+\frac{129}{8}\)

    • \(x^3+\frac{1}{x^4}-\frac{129}{8}\)

    2.

    Solve system of linear equations, using matrix method.
     x-y+2z=7
     3x+4y-5z=-5
     2x-y+3z=12

        3.
        Find the following integral: \(\int (ax^2+bx+c)dx\)

            4.

            Let A=\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\),show that(aI+bA)n=anI+nan-1bA,where I is the identity matrix of order 2 and n∈N

                5.
                If A'= \(\begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 &1 \end{bmatrix}\)\(\begin{bmatrix}  -1 & 2 & 1 \\ 1 &2 & 3\end{bmatrix}\) , then verify that 
                (i) \((A+B)'=A'+B' \)
                (ii) \((A-B)'=A'-B'\)

                    6.

                    Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta  &-sin\alpha \\   -sin\beta&cos\beta  &0 \\   sin\alpha cos\beta&sin\alpha\sin\beta  &cos\alpha  \end{vmatrix}\)

                        CBSE CLASS XII Previous Year Papers

                        Comments



                        No Comments To Show