NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry Exercise 8.4

Jasmine Grover logo

Jasmine Grover

Content Strategy Manager

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry Exercise 8.4 is provided in this article. Class 10 Maths Chapter 8 Introduction to Trigonometry is included under the unit Trigonometry. Chapter 8 exercise 8.4 is the last exercise of this chapter and includes questions based on trigonometric identities.

Download PDF: NCERT Solutions for Class 10 Maths Exercise 8.4


Check below the pdf of NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4

Read Also: NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry

Check out NCERT solutions of other exercises of class 10 maths chapter 8 Introduction to Trigonometry:


Class 10 Chapter 8 Introduction to Trigonometry Related Links:

CBSE Class 10 Maths Study Guides:

CBSE X Related Questions

1.

Form the pair of linear equations for the following problems and find their solution by substitution method.

(i) The difference between two numbers is 26 and one number is three times the other. Find them.

(ii) The larger of two supplementary angles exceeds the smaller by 18 degrees. Find them.

(iii) The coach of a cricket team buys 7 bats and 6 balls for Rs 3800. Later, she buys 3 bats and 5 balls for Rs 1750. Find the cost of each bat and each ball.

(iv) The taxi charges in a city consist of a fixed charge together with the charge for the distance covered. For a distance of 10 km, the charge paid is Rs 105 and for a journey of 15 km, the charge paid is Rs 155. What are the fixed charges and the charge per km? How much does a person have to pay for travelling a distance of 25 km.

(v) A fraction becomes\(\frac{ 9}{11}\), if 2 is added to both the numerator and the denominator. If, 3 is added to both the numerator and the denominator it becomes \(\frac{5}{6}\). Find the fraction.

(vi) Five years hence, the age of Jacob will be three times that of his son. Five years ago, Jacob’s age was seven times that of his son. What are their present ages?

      2.
      If 3 cot A = 4, check whether \(\frac{(1-\text{tan}^2 A)}{(1+\text{tan}^2 A)}\) = cos2 A – sinA or not

          3.

          Prove the following identities, where the angles involved are acute angles for which the expressions are defined:\(\frac{(\text{1 + tan² A})}{(\text{1 + cot² A})} = (\frac{\text{1 - tan A }}{\text{ 1 - cot A}})^²= \text{tan² A}\)

              4.

              The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, mean and mode of the data and compare them

              Monthly consumption 
              (in units)

               Number of consumers

              65 - 85 

              4

              85 - 105

              5

              105 - 125

              13

              125 - 145

              20

              145 - 165

              14

              165 - 185

              8

              185 - 205

              4

                  5.
                  Which of the following are APs? If they form an AP, find the common difference d and write three more terms.
                  (i) 2, 4, 8, 16, . . . .
                  (ii) \(2, \frac{5}{2},3,\frac{7}{2}\), . . . .
                  (iii) – 1.2, – 3.2, – 5.2, – 7.2, . . . .
                  (iv) – 10, – 6, – 2, 2, . . .
                  (v) 3, \(3 + \sqrt{2} , 3 + 3\sqrt{2} , 3 + 3 \sqrt{2}\) . . . .
                  (vi) 0.2, 0.22, 0.222, 0.2222, . . . .
                  (vii) 0, – 4, – 8, –12, . . . .
                  (viii) \(\frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}\), . . . .
                  (ix) 1, 3, 9, 27, . . . .
                  (x) a, 2a, 3a, 4a, . . . .
                  (xi) a, \(a^2, a^3, a^4,\)  . . . .
                  (xii) \(\sqrt{2}, \sqrt{8} , \sqrt{18} , \sqrt {32}\) . . . .
                  (xiii) \(\sqrt {3}, \sqrt {6}, \sqrt {9} , \sqrt {12}\) . . . . .
                  (xiv) \(1^2 , 3^2 , 5^2 , 7^2\), . . . .
                  (xv) \(1^2 , 5^2, 7^2, 7^3\), . . . .

                      6.
                      Which of the following pairs of linear equations are consistent/inconsistent? If consistent, obtain the solution graphically: (i) \(x + y = 5\),\( 2x + 2y = 10\) (ii)\( x – y = 8 , 3x – 3y = 16\) (iii) \(2x + y – 6 = 0\) , \(4x – 2y – 4 = 0\) (iv) \(2x – 2y – 2 = 0,\) \( 4x – 4y – 5 = 0\)

                          Comments



                          No Comments To Show