Content Curator
Trigonometry is a branch of mathematics that studies the relation between the side and angles of a triangle and this concept was given by the Greek Mathematician Hipparchus.
Chapter 8 Introduction to Trigonometry falls under Unit 5 Trigonometry who carries a total weightage of 12 marks according to the current CBSE Class 10 Mathematics Exam Pattern.
Table of Content |
Applications of Trigonometry
[Click Here for Sample Questions]
Trigonometry has different applications such as :
- It is used extensively in the aviation industry
- It is used for cartography for the creation of maps.
- It is used for light and sound waves.
There are basically six functions of an angle commonly used in trigonometry. The names are :
- Sine (sin)
- Cosine (cos)
- Tangent(tan)
- Cotangent(cot)
- Secant(sec)
- Cosecant(cosec)
Basic Formulas
sinA = Opposite/Hypotenuse
cosA = Adjacent/Hypotenuse
tanA = Opposite/Adjacent = sinA/cosA
cosA = 1/sinA
secA = 1/cosA
cotA = 1/tanA = cosA/sinA
Basic Identities
Sin2A + cos2A = 1
Tan2A + 1 = sec2A
1 + cot2A = cosec2A
Important Questions
Ques 1. Given that, In a right angle triangle ABC, tan B =12/5, then find sin B? (2 marks)
Ans: 1st Method
tanB = 12/5
cotB = 5/12
Cosec2B = 1 + cot2B = 1+[(5/12)2]
= 1 + [25/144]
= (144 + 25 )/144
=169/144
cosecB= 13/12
sinB=12/13
2nd Method
tanB = 12/5
tanB= AC/BC
let AC=12k, BC= 5k
In right angle triangle ΔACB,
AB2 = AC2 + BC2 …..[Pythagoras theorem]
AB2 = (12k)2 + (5k)2
AB2 = 144k2 + 25k2 = 169k2
AB = 13K
sinB = AC/AB = 12k/13k = 12/13
Ques 2. If sinA = 3/4 calculate cosA and tanA ? (3 marks)
Ans: Let ABC is a right angle triangle, right-angled at B.
sinA = 3/4
sinA = Opposite side/ Hypotenuse side = 3/4
Now, let BC = 3k and AC = 4k
Where k is a positive real number.
According to pythagoras theorem,
H2 = P2 + B2
AC2 = AB2 + BC2
Substitute the values in to the equation
(4k)2 = (AB)2 + (BC)2
16k2 – 9k2 = AB2
AB2 = 7k2
Hence, AB = 7k
Now, We need to find the value of cosA and tanA.
cosA = Adjacent side / Hypotenuse side = AB/AC
cosA = 7k/4k = 3/7.
Ques 3. If 3cotA = 4, check whether (1 – tan2A)(1+tan2A) = cos2A – sin2A or not ? (4 marks)
Ans: Given,
3cotA = 4
cotA = 4/3
since, tanA = 1/cotA
tanA = 1/(4/3)=3/4
BC/AB = 3/4
Let BC = 3k and AB = 4k
By Pythagoras theorem:
H2 = P2 + B2
AC2 = AB2 + BC2
AC2 = (4k)2 + (3k)2
AC2 = 16k2 + 9k2
AC = 25k2 = 5k
sinA = Opposite side/ Hypotenuse
= BC/AC
= 3k/5k
= 3/5
In the same way,
cosA = Adjacent side/ Hypotenus
=AB/AC
= 4k/5k
=4/5
To check: (1-tan2A)/(1+tan2A) = cos2A – sin2A or not
L.H.S
(1-tan2A)/(1+tan2A) = [1 – (3/4)2]/ [1+ (3/4)2]
= [1-(9/16)]/[1+(9/16)] = 7/25
R.H.S. = cos2A – sin2A = (4/5)2 – (3/5)2
(16/25) – (9/25) – 7/25
Since, L.H.S =R.H.S.
Hence, Proved
Ques 4. In a triangle, right angled at Q, PR + QR = 25 cm and PQ =5 cm. Determine the value of sinP ? (3 marks)
Ans:
In this triangle PQR,
PQ = 5cm
PQ + QR = 25cm
Let say, QR = X
Then PR = 25 – QR = 25 –X
Using Pythagoras theorem
PR2 = PQ2 + QR2
Now, Substituting the values
(25 – X)2 = (5)2 + (X)2
252 +X2-50X = 25 + X2
625 – 50X = 25
50X = 600
X = 12
So, QR = 12cm
PR = 25 – QR = 25 – 12 = 13 cm
Therefore,
sinP = QR/PR = 12/13
cosP = PQ/PR = 5/13
tanP= QR/PQ = 12/5
Ques 5. If tan2A = cot (A-180), where 2A is an acute angle, Find the value of A. (2 marks)
Ans: Given,
tan2A = cot (A-180)
tan2A – cot (900 – 2A)
Substituting the values,
Cot(900 – 2A ) = cot (A-180 )
Therefore,
900 – 2A = A-180
1080 = 3A
A= 1080 /3
Hence, The value of A = 360
Ques 6. In triangle ABC, right- angled at B, AB = 24 cm, BC = 7 cm.
SinA, cosA
sicC, cosC (3 marks)
Ans: In a given triangle ABC, right-angled a B=900
Given: AB = 24 cm and BC = 7 cm
Hence AC = Hypotenuse
According to the theorem,
H2 = P2 + B2
AC2 = AB2 + BC2
AC2 = (24)2 + 72
AC2 = (576 + 49)
AC2 = 625 cm2
Therefore, AC= 25 cm.
- We need to find sinA and cosA
As we know, sine of the angle is equal to the ratio of perpendicular and hypotenuse of the triangle.
sinA = BC/AC = 7/25
cosA = AB/AC= 24/25
- We need to find sinC and cosC
sinC=AB/AC= 24/25
cosC =BC/AC = 7/25
Ques 7. If A,B,C are interior angles of a triangle ABC, then show that sin[(B + C)/2] = cos A/2. (2 marks)
Ans: The sum of all its interior angles is equals to 1800
A + B + C = 1800
B + C = 1800 – A
Divide the equation by 2
(B + C)/2 = (1800 – A)/2
(B +C)/2 = 900 – A/2
Now, put sin function on both the sides
sin( B + C)/2 = sin (900 – A/2)
since,
sin(900 –A/2) = cosA/2
sin(B+C)/2 =cosA/2
Ques 8. Evaluate 2 tan245 + cos230 – sin260. (1 mark)
Ans:
Tan 45 =1
cos30 = 3/2
sin 60 = 3/2
put the value in the equation
2(1)2 + (3/2)2 – (3/2)2
=2+0
=2
Question 9. If sec 4A = cosec ( A – 200 ) where 4A is an aute angle, Find the value of A. (1 mark)
Ans:
Sec 4A = cosec (A-200 )
Cosec (900-4A) = cosec(A-200 )
900 - 4A = A-200
1100 = 5A
A=220
Ques 10. If tanA + cotA = 5 , Find the value of tan2A + cotA? (1 mark)
Ans:
Given: tanA + cotA = 5
Squaring both the sides
tan2A+cot2A+2tanAcotA = 25
tan2A+cot2A +2=25
Hence, tan2A+cot2A =23
Question 11. Prove the following identity:
sin3A+cos3A/sinA+cosA = 1-sinA.cosA (1 mark)
Ans:
L.H.S. = sin3A+cos3A/sinA+cosA
= (sinA + cosA)(sin2A + cos2A - sinAcosA)/(sinA + cosA)
= 1 - sinAcosA = R.H.S. ………[sin2A + cos2A = 1]
Question 12. Prove that
sinA – cosA/sinA+cosA + sinA+cosA/sinA-cosA = 2/2sin2-1 (2 marks)
Ans:
L.H.S. = sinA – cosA/sinA+cosA + sinA+cosA/sinA-cosA
=(sinA - cosA)2 + (sinA + cosA)2/(sinA + cosA)(sinA - cosA)
=sin2A + cos2A - 2sinAcosA + sin2A+cos2A + 2sinAcosA/sin2A - cos2A
=1 + 1/sin2A - (1 - sin2A)
= 2/sin2A – 1 + sin2A
= 2/2sin2A - 1
Ques 13. Evaluate 4(sin430 + cos460)- 3(cos2450 – sin2900) (2 marks)
Ans:
Given : 4(sin430 + cos460)- 3(cos2450 – sin2900)
=4[(1/2)4 + [(1/2)4] – 3[(1/2)2 -1 ]
=4[1/16 + 1/16] – 3[1/2 - 1]
= 4*2/16-3(-1/2)
= 1/2 + 3/2 = 4/2 =2
Ques 14. Prove that tan3A/1+tan2A + cot3A/1+cot2A = secAcosecA -2sinAcosA. (3 marks)
Ans:
tan3A/1+tan2A + cot3A/1+cot2A = secAcosecA -2sinAcosA.
=sin3A/cos3A *cos2A + cos3A/sin3A*sin2A
=sin3A/cosA + cos3A/sinA
= sin4A + cos4A/sinAcosA
=(sin2A)2 + (cos2A)2/sinAcosA
= (sin2A + cos2A) – 2sin2Acos2A/sinAcosA
=1-2sin2Acos2A/sinAcosA
=1/sinAcosA – 2 sin2Acos2A/sinAcosA
=secAcosecA – 2sinAcosA
Ques 15. If cosecA + cotA = m , show that m2-1/m2+1 =cosA (3 marks)
Ans:
L.H.S. = m2-1/m2+1
= (cosecA + cotA)2 – 1/(cosecA - cotA)2 + 1
=cosec2A+cot2A+2cosecAcotA-1/ cosec2A+cot2A+2cosecAcotA+1
= (cosec2A - 1) + cot2A + 2cosecAcotA/ cosec2A + (1 + cot2A)+ 2cosecAcotA
= cot2A +cot2A+2cosecAcotA/cosec2A+cosec2A+2cosecAcotA
=2cot2A + 2cosecAcotA/2cosec2A +2cosecAcotA
= 2cotA(cotA+cosecA)/2cosecA(cosecA + cotA)
=cotA/cosecA
=cosA/sinAcosecA
=cosA = R.H.S.
Hence,
cosA = m2 -1/m2+1
Ques 16. In a triangle, right angled at B, BC= 7 cm and AC – AB = 1 cm. Find the value of cosA +sinA (2 marks)
Ans:
Let AC = x cm , AB = y cm
Therefore, x-y=1 ……………….(1)
Now, B is a right angle
So, AC2 = AB2 + BC2
x2-y2 =72
(x - y)(x + y) = 49
1*(x + y) = 49
x+y = 49 ……………..(2)
Solving eq 1 and 2,
X= 25 and y= 24
Now, cosA + sinA = AB/AC + BC/AC
= 24/25 + 7/25
= 31/25
Ques 17. Prove that (1 + cotA – cosecA) (1 + tanA + secA) = 2 (2 marks)
Ans:
L.H.S = (1 + cotA – cosecA) (1 + tanA + secA)
= ( 1+ cosA/sinA – 1/sinA)(1 + sinA/cosA + 1/cosA)
=(sinA + cosA – 1/sinA) (cosA+sinA+1/cosA)
= (sinA + cosA)2-1/sinAcosA
= sin2A +cos2A + 2sinAcosA -1 /sinAcosA
= 1+2sinAcosA -1/sinAcosA =2sinAcosA/sinAcosA=2
Ques 18. Prove that sinA ( 1 + tanA) + cosA(1 + cotA) = secA + cosecA (2 marks)
Ans:
L.H.S. sinA ( 1 + tanA) + cosA(1 + cotA)
= sinA ( cosA + sinA)/cosA + cosA(sinA + cosA)/sinA
=(cosA + sinA)[sinA/cosA + cosA/sinA]
= (cosA + sinA)/cosAsinA (sin2A + cos2A)
=cosA/cosAsinA + sin/cosAsinA
=cosecA + secA
Ques 19. sin3A + cos3A/sinAcosA + sinAcosA (1 mark)
Ans:
sin3A + cos3A/sinAcosA + sinAcosA
= (sinA + cosA) ( sin2A + cos2A – sinAcosA)/(sinA + cosA) + sinA.cosA
= 1- sinAcosA + sinAcosA =1
Ques 20. cosA/1+sinA + 1+sinA/cosA = 2secA (2 marks)
Ans:
L.H.S. cosA/1+sinA + 1+sinA/cosA
= cos2A + ( 1 + sinA)2/(1+sinA)cosA
= cos2A + sin2A + 1+ 2sinA/(1+sinA)cosA
= 2(1+sinA)/(1+sinA)cosA
= 2/cosA
= 2secA
= R.H.S.
Ques 21. If sinA = 1/3, then find the value of ( 2cot2A+2) (1 mark)
Ans:
2(cot2A+1) =2.cosec2A
= 2/sin2A
= 2/(1/9)
=18
Comments