Introduction to Trigonometry Important Questions: Applications of Trigonometry

Collegedunia Team logo

Collegedunia Team

Content Curator

Trigonometry is a branch of mathematics that studies the relation between the side and angles of a triangle and this concept was given by the Greek Mathematician Hipparchus.

Chapter 8 Introduction to Trigonometry falls under Unit 5 Trigonometry who carries a total weightage of 12 marks according to the current CBSE Class 10 Mathematics Exam Pattern. 


Applications of Trigonometry

[Click Here for Sample Questions]

Trigonometry has different applications such as :

  • It is used extensively in the aviation industry
  • It is used for cartography for the creation of maps.
  • It is used for light and sound waves.

 There are basically six functions of an angle commonly used in trigonometry. The names are :

  • Sine (sin)
  • Cosine (cos)
  • Tangent(tan)
  • Cotangent(cot)
  • Secant(sec)
  • Cosecant(cosec)

Basic Formulas

sinA = Opposite/Hypotenuse

cosA = Adjacent/Hypotenuse

tanA = Opposite/Adjacent = sinA/cosA

cosA = 1/sinA

secA = 1/cosA

cotA = 1/tanA = cosA/sinA

Basic Identities

Sin2A + cos2A = 1

Tan2A + 1 = sec2A

1 + cot2A = cosec2A

Important Questions

Ques 1. Given that, In a right angle triangle ABC, tan B =12/5, then find sin B?   (2 marks)

Ans: 1st Method

tanB = 12/5

cotB = 5/12

Cosec2B = 1 + cot2B = 1+[(5/12)2]

= 1 + [25/144]

= (144 + 25 )/144

=169/144

cosecB= 13/12

sinB=12/13

2nd Method

tanB = 12/5

tanB= AC/BC

let AC=12k, BC= 5k

In right angle triangle ΔACB,

AB2 = AC2 + BC2  …..[Pythagoras theorem]

AB2 = (12k)2 + (5k)2

AB2  = 144k2 + 25k2 = 169k2

AB = 13K

sinB = AC/AB = 12k/13k = 12/13

Ques 2. If sinA = 3/4 calculate cosA and tanA ?  (3 marks)

Ans: Let ABC is a right angle triangle, right-angled at B.

sinA = 3/4

sinA = Opposite side/ Hypotenuse side = 3/4

Now, let BC = 3k and AC = 4k

Where k is a positive real number.

According to pythagoras theorem,

H2 = P2 + B2

AC2 = AB2 + BC2

Substitute the values in to the equation

(4k)2 = (AB)2 + (BC)2

16k2 – 9k2 = AB2

AB2 = 7k2

Hence, AB = 7k

Now, We need to find the value of cosA and tanA.

cosA = Adjacent side / Hypotenuse side = AB/AC

cosA = 7k/4k = 3/7.

Ques 3. If 3cotA = 4, check whether (1 – tan2A)(1+tan2A) = cos2A – sin2A or not ?  (4 marks)

Ans: Given,

3cotA = 4

cotA = 4/3

since, tanA = 1/cotA

tanA = 1/(4/3)=3/4

BC/AB = 3/4

Let BC = 3k and AB = 4k

By Pythagoras theorem:

H2 = P2 + B2

AC2 = AB2 + BC2

AC2 = (4k)2 + (3k)2

AC2 = 16k2 + 9k2

AC = 25k2 = 5k

sinA = Opposite side/ Hypotenuse

= BC/AC

= 3k/5k

= 3/5

In the same way,

cosA = Adjacent side/ Hypotenus

=AB/AC

= 4k/5k

=4/5

To check: (1-tan2A)/(1+tan2A) = cos2A – sin2A or not

L.H.S

(1-tan2A)/(1+tan2A) = [1 – (3/4)2]/ [1+ (3/4)2]

= [1-(9/16)]/[1+(9/16)] = 7/25

R.H.S. = cos2A – sin2A = (4/5)2 – (3/5)2

(16/25) – (9/25) – 7/25

Since, L.H.S =R.H.S.

Hence, Proved

Ques 4. In a triangle, right angled at Q, PR + QR = 25 cm and PQ =5 cm. Determine the value of sinP ?  (3 marks)

Ans:

In this triangle PQR,

PQ = 5cm

PQ + QR = 25cm

Let say, QR = X

Then PR = 25 – QR = 25 –X

Using Pythagoras theorem

PR2 = PQ2 + QR2

Now, Substituting the values

(25 – X)2 = (5)2 + (X)2

252 +X2-50X = 25 + X2

625 – 50X = 25

50X = 600

X = 12

So, QR = 12cm

PR = 25 – QR = 25 – 12 = 13 cm

Therefore,

sinP = QR/PR = 12/13

cosP = PQ/PR = 5/13

tanP= QR/PQ = 12/5

Ques 5. If tan2A = cot (A-180), where 2A is an acute angle, Find the value of A.  (2 marks)

Ans: Given,

tan2A = cot (A-180)

tan2A – cot (900 – 2A)

Substituting the values,

Cot(900 – 2A ) = cot (A-180 )

Therefore,

900 – 2A = A-180

1080 = 3A

A= 1080 /3

Hence, The value of A = 360

Ques 6. In triangle ABC, right- angled at B, AB = 24 cm, BC = 7 cm.
SinA, cosA
sicC, cosC  (3 marks)

Ans: In a given triangle ABC, right-angled a B=900

Given: AB = 24 cm and BC = 7 cm

Hence AC = Hypotenuse

According to the theorem,

H2 = P2 + B2

AC2 = AB2 + BC2

AC2 = (24)2 + 72

AC2 = (576 + 49)

AC2 = 625 cm2

Therefore, AC= 25 cm.

  1. We need to find sinA and cosA

As we know, sine of the angle is equal to the ratio of perpendicular and hypotenuse of the triangle.

sinA = BC/AC = 7/25

cosA = AB/AC= 24/25

  1. We need to find sinC and cosC

sinC=AB/AC= 24/25

cosC =BC/AC = 7/25

Ques 7. If A,B,C are interior angles of a triangle ABC, then show that sin[(B + C)/2] = cos A/2.  (2 marks)

Ans: The sum of all its interior angles is equals to 1800

A + B + C = 1800

B + C = 1800 – A

Divide the equation by 2

(B + C)/2 = (1800 – A)/2

(B +C)/2 = 900 – A/2

Now, put sin function on both the sides

sin( B + C)/2 = sin (900 – A/2)

since,

sin(900 –A/2) = cosA/2

sin(B+C)/2 =cosA/2

Ques 8. Evaluate 2 tan245 + cos230 – sin260.  (1 mark)

Ans:

Tan 45 =1

cos30 = 3/2

sin 60 = 3/2

put the value in the equation

2(1)2 + (3/2)2 – (3/2)2

=2+0

=2

Question 9. If sec 4A = cosec ( A – 200 ) where 4A is an aute angle, Find the value of A.  (1 mark)

Ans:

Sec 4A = cosec (A-200 )

Cosec (900-4A) = cosec(A-200 )

900 - 4A = A-200

1100 = 5A

A=220

Ques 10. If tanA + cotA = 5 , Find the value of tan2A + cotA?  (1 mark)

Ans:

Given: tanA + cotA = 5

Squaring both the sides

tan2A+cot2A+2tanAcotA = 25

tan2A+cot2A +2=25

Hence, tan2A+cot2A =23

Question 11. Prove the following identity:
sin3A+cos3A/sinA+cosA = 1-sinA.cosA  (1 mark)

Ans:

L.H.S. = sin3A+cos3A/sinA+cosA

= (sinA + cosA)(sin2A + cos2A - sinAcosA)/(sinA + cosA)

= 1 - sinAcosA = R.H.S. ………[sin2A + cos2A = 1]

Question 12. Prove that
sinA – cosA/sinA+cosA + sinA+cosA/sinA-cosA = 2/2sin2-1  (2 marks)

Ans:

L.H.S. = sinA – cosA/sinA+cosA + sinA+cosA/sinA-cosA

=(sinA - cosA)2 + (sinA + cosA)2/(sinA + cosA)(sinA - cosA)

=sin2A + cos2A - 2sinAcosA + sin2A+cos2A + 2sinAcosA/sin2A - cos2A

=1 + 1/sin2A - (1 - sin2A)

= 2/sin2A – 1 + sin2A

= 2/2sin2A - 1

Ques 13. Evaluate 4(sin430 + cos460)- 3(cos2450 – sin2900) (2 marks)

Ans:

Given : 4(sin430 + cos460)- 3(cos2450 – sin2900)

=4[(1/2)4 + [(1/2)4] – 3[(1/2)2 -1 ]

=4[1/16 + 1/16] – 3[1/2 - 1]

= 4*2/16-3(-1/2)

= 1/2 + 3/2 = 4/2 =2

Ques 14. Prove that tan3A/1+tan2A + cot3A/1+cot2A = secAcosecA -2sinAcosA. (3 marks)

Ans:

tan3A/1+tan2A + cot3A/1+cot2A = secAcosecA -2sinAcosA.

=sin3A/cos3A *cos2A + cos3A/sin3A*sin2A

=sin3A/cosA + cos3A/sinA

= sin4A + cos4A/sinAcosA

=(sin2A)2 + (cos2A)2/sinAcosA

= (sin2A + cos2A) – 2sin2Acos2A/sinAcosA

=1-2sin2Acos2A/sinAcosA

=1/sinAcosA – 2 sin2Acos2A/sinAcosA

=secAcosecA – 2sinAcosA

Ques 15. If cosecA + cotA = m , show that m2-1/m2+1 =cosA (3 marks)

Ans:

L.H.S. = m2-1/m2+1

= (cosecA + cotA)2 – 1/(cosecA - cotA)2 + 1

=cosec2A+cot2A+2cosecAcotA-1/ cosec2A+cot2A+2cosecAcotA+1

= (cosec2A - 1) + cot2A + 2cosecAcotA/ cosec2A + (1 + cot2A)+ 2cosecAcotA

= cot2A +cot2A+2cosecAcotA/cosec2A+cosec2A+2cosecAcotA

=2cot2A + 2cosecAcotA/2cosec2A +2cosecAcotA

= 2cotA(cotA+cosecA)/2cosecA(cosecA + cotA)

=cotA/cosecA

=cosA/sinAcosecA

=cosA = R.H.S.

Hence,

cosA = m2 -1/m2+1

Ques 16. In a triangle, right angled at B, BC= 7 cm and AC – AB = 1 cm. Find the value of cosA +sinA (2 marks)

Ans:

Let AC = x cm , AB = y cm

Therefore, x-y=1 ……………….(1)

Now, B is a right angle

So, AC2 = AB2 + BC2

x2-y2 =72

(x - y)(x + y) = 49

1*(x + y) = 49

x+y = 49 ……………..(2)

Solving eq 1 and 2,

X= 25 and y= 24

Now, cosA + sinA = AB/AC + BC/AC

 = 24/25 + 7/25

 = 31/25

Ques 17. Prove that (1 + cotA – cosecA) (1 + tanA + secA) = 2 (2 marks)

Ans:

L.H.S = (1 + cotA – cosecA) (1 + tanA + secA)

= ( 1+ cosA/sinA – 1/sinA)(1 + sinA/cosA + 1/cosA)

=(sinA + cosA – 1/sinA) (cosA+sinA+1/cosA)

= (sinA + cosA)2-1/sinAcosA

= sin2A +cos2A + 2sinAcosA -1 /sinAcosA

= 1+2sinAcosA -1/sinAcosA =2sinAcosA/sinAcosA=2

Ques 18. Prove that sinA ( 1 + tanA) + cosA(1 + cotA) = secA + cosecA (2 marks)

Ans:

L.H.S. sinA ( 1 + tanA) + cosA(1 + cotA)

= sinA ( cosA + sinA)/cosA + cosA(sinA + cosA)/sinA

=(cosA + sinA)[sinA/cosA + cosA/sinA]

= (cosA + sinA)/cosAsinA (sin2A + cos2A)

=cosA/cosAsinA + sin/cosAsinA

=cosecA + secA

Ques 19. sin3A + cos3A/sinAcosA + sinAcosA (1 mark)

Ans:

sin3A + cos3A/sinAcosA + sinAcosA

= (sinA + cosA) ( sin2A + cos2A – sinAcosA)/(sinA + cosA) + sinA.cosA

= 1- sinAcosA + sinAcosA =1

Ques 20. cosA/1+sinA + 1+sinA/cosA = 2secA (2 marks)

Ans:

L.H.S. cosA/1+sinA + 1+sinA/cosA

= cos2A + ( 1 + sinA)2/(1+sinA)cosA

= cos2A + sin2A + 1+ 2sinA/(1+sinA)cosA

= 2(1+sinA)/(1+sinA)cosA

= 2/cosA

= 2secA

= R.H.S.

Ques 21. If sinA = 1/3, then find the value of ( 2cot2A+2) (1 mark)

Ans:

2(cot2A+1) =2.cosec2A

= 2/sin2A

= 2/(1/9)

=18

CBSE X Related Questions

1.

A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

      2.

      Solve the following pair of linear equations by the substitution method. 
      (i) x + y = 14 
          x – y = 4   

      (ii) s – t = 3 
          \(\frac{s}{3} + \frac{t}{2}\) =6 

      (iii) 3x – y = 3 
            9x – 3y = 9

      (iv) 0.2x + 0.3y = 1.3 
           0.4x + 0.5y = 2.3 

      (v)\(\sqrt2x\) + \(\sqrt3y\)=0
          \(\sqrt3x\) - \(\sqrt8y\) = 0

      (vi) \(\frac{3x}{2} - \frac{5y}{3}\) =-2,
          \(\frac{ x}{3} + \frac{y}{2}\) = \(\frac{ 13}{6}\)

          3.
          A vessel is in the form of an inverted cone. Its height is 8 cm and the radius of its top, which is open, is 5 cm. It is filled with water up to the brim. When lead shots, each of which is a sphere of radius 0.5 cm are dropped into the vessel, one-fourth of the water flows out. Find the number of lead shots dropped in the vessel.

              4.
              The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building.

                  5.
                  Which of the following pairs of linear equations are consistent/inconsistent? If consistent, obtain the solution graphically: (i) \(x + y = 5\),\( 2x + 2y = 10\) (ii)\( x – y = 8 , 3x – 3y = 16\) (iii) \(2x + y – 6 = 0\) , \(4x – 2y – 4 = 0\) (iv) \(2x – 2y – 2 = 0,\) \( 4x – 4y – 5 = 0\)

                      6.

                      The lengths of 40 leaves of a plant are measured correct to the nearest millimetre, and the data obtained is represented in the following table :

                      Length (in mm)

                      Number of leaves

                      118 - 126

                      3

                      127 - 135 

                      5

                      136 - 144

                      9

                      145 - 153

                      12

                      154 - 162

                      5

                      163 - 171

                      4

                      172 - 180

                      2

                      Find the median length of the leaves. 
                      (Hint : The data needs to be converted to continuous classes for finding the median, since the formula assumes continuous classes. The classes then change to 117.5 - 126.5, 126.5 - 135.5, . . ., 171.5 - 180.5.)

                          Comments



                          No Comments To Show