GATE logo

GATE 2025 Syllabus for Instrumentation Engineering: Download IN Syllabus with Weightage PDF

Sonal Vaid logo

Sonal Vaid

Content Curator | Updated On - Jul 4, 2024

GATE Syllabus for Instrumentation Engineering 2025 consists of 10 major topics including Engineering Mathematics that are based on the principle and operation of measuring instruments used in fields of design, configuration of automated systems, etc. GATE question paper for Instrumentation Engineering is divided into three sections- General Aptitude, Engineering Mathematics and Core Discipline. The core subjects for Instrumentation Engineering carry the highest weightage with 72%. Check GATE Instrumentation Engineering Exam Pattern 2025

Digital and MicroProcessor carries the highest weightage in the GATE Syllabus for Instrumentation Engineering 2025. The candidates who are appearing for GATE Instrumentation Engineering paper can also appear for any one of the following papers i.e., GATE Electronics and Communication Engineering, GATE Electrical Engineering or GATE Physics.

Quick Links: 


GATE Syllabus for IN

GATE Syllabus for Instrumentation Engineering (IN) 2025

GATE syllabus for Instrumentation Engineering divided into 10 important topics including engineering mathematics. Candidate can check the detailed GATE Syllabus for Instrumentation Engineering (IN) with all the important topics and sub-topics: 

Important Topics for GATE Instrumentation Engineering Syllabus
Engineering Mathematics Electricity and Magnetism
Electrical Circuits and Machines Signals and Systems
Control Systems Analog Electronics
Digital Electronics Measurements
Sensors and Industrial Instrumentation Communication and Optical Instrumentation

Section 1: Engineering Mathematics

  • Linear Algebra: Matrix algebra, systems of linear equations, consistency and rank, Eigen values and Eigen vectors. 
  • Calculus: Mean value theorems, theorems of integral calculus, partial derivatives, maxima and minima, multiple integrals, Fourier series, vector identities, line, surface and volume integrals, Stokes, Gauss and Green’s theorems. 
  • Differential equations: First order equation (linear and nonlinear), second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy’s and Euler’s equations, initial and boundary value problems, solution of partial differential equations: variable separable method. 
  • Analysis of complex variables: Analytic functions, Cauchy’s integral theorem and integral formula, Taylor’s and Laurent’s series, residue theorem, solution of integrals. 
  • Probability and Statistics: Sampling theorems, conditional probability, mean, median, mode, standard deviation and variance; random variables: discrete and continuous distributions: normal, Poisson and binomial distributions. 
  • Numerical Methods: Matrix inversion, solutions of non-linear algebraic equations, iterative methods for solving differential equations, numerical integration, regression and correlation analysis.

Section 2: Electricity and Magnetism

  • Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot‐Savart’s law, Ampere’s law, Curl, Faraday’s law, Lorentz force, Inductance,
  • Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations.

Section 3: Electrical Circuits and Machines

  • Voltage and current sources: independent, dependent, ideal and practical; v-i relationships of resistor, inductor, mutual inductance and capacitor; transient analysis of RLC circuits with dc excitation.
  • Kirchoff’s laws, mesh and nodal analysis, superposition, Thevenin, Norton, maximum power transfer and reciprocity theorems.
  • Peak-, average- and rms values of ac quantities; apparent-, active- and reactive powers; phasor analysis, impedance and admittance; series and parallel resonance, locus diagrams, realization of basic filters with R, L and C elements. transient analysis of RLC circuits with ac excitation.
  • One-port and two-port networks, driving point impedance and admittance, open-, and short circuit parameters.
  • Single phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three phase induction motors: principle of operation, types, performance, torque-speed characteristics, no-load and blocked rotor tests, equivalent circuit, starting and speed control; Types of losses and efficiency calculations of electric machines.

Section 4: Signals and Systems

  • Periodic, aperiodic and impulse signals; Laplace, Fourier and z-transforms; transfer function, frequency response of first and second order linear time invariant systems, impulse response of systems; convolution, correlation. Discrete time system: impulse response, frequency response, pulse transfer function; DFT and FFT; basics of IIR and FIR filters.

Section 5: Control Systems

  • Feedback principles, signal flow graphs, transient response, steady-state-errors, Bode plot, phase and gain margins, Routh and Nyquist criteria, root loci, design of lead, lag and lead-lag compensators, state-space representation of systems; time-delay systems; mechanical, hydraulic and pneumatic system components, synchro pair, servo and stepper motors, servo valves; on-off, P, P-I, P-I-D, cascade, feedforward, and ratio controllers.

Section 6: Analog Electronics

  • Characteristics and applications of diode, Zener diode, BJT and MOSFET; small signal analysis of transistor circuits, feedback amplifiers. Characteristics of operational amplifiers; applications of op amps: difference amplifier, adder, subtractor, integrator, differentiator, instrumentation amplifier, precision rectifier, active filters and other circuits. Oscillators, signal generators, voltage controlled oscillators and phase locked loop.

Section 7: Digital Electronics

  • Combinational logic circuits, minimization of Boolean functions. IC families: TTL and CMOS. Arithmetic circuits, comparators, Schmitt trigger, multi-vibrators, sequential circuits, flip flops, shift registers, timers and counters; sample-and-hold circuit, multiplexer, analog-to digital (successive approximation, integrating, flash and sigma-delta) and digital-to analog converters (weighted R, R-2R ladder and current steering logic). Characteristics of ADC and DAC

Section 8: Measurements

  • SI units, systematic and random errors in measurement, expression of uncertainty - accuracy and precision index, propagation of errors. PMMC, MI and dynamometer type instruments; dc potentiometer; bridges for measurement of R, L and C, Q-meter. Measurement of voltage, current and power in single and three phase circuits; ac and dc current probes; true rms meters, voltage and current scaling, instrument transformers, timer/counter, time, phase and frequency measurements, digital voltmeter, digital multimeter; oscilloscope, shielding and grounding.

Section 9: Sensors and Industrial Instrumentation

  • Resistive-, capacitive-, inductive-, piezoelectric-, Hall effect sensors and associated signal conditioning circuits; transducers for industrial instrumentation: displacement (linear and angular), velocity, acceleration, force, torque, vibration, shock, pressure (including low pressure), flow (differential pressure, variable area, electromagnetic, ultrasonic, turbine and open channel flow meters) temperature (thermocouple, bolometer, RTD (3/4 wire), thermistor, pyrometer and semiconductor); liquid level, pH, conductivity and viscosity measurement.

Section 10: Communication and Optical Instrumentation

  • Amplitude- and frequency modulation and demodulation; Shannon's sampling theorem, pulse code modulation; frequency and time division multiplexing, amplitude-, phase-, frequency-, pulse shift keying for digital modulation; optical sources and detectors: LED, laser, photo-diode, light dependent resistor and their characteristics; interferometer: applications in metrology; basics of fiber optic sensing.

General Aptitude Syllabus for GATE 2025 Instrumentation Engineering

Verbal Ability Numerical Ability
English grammar; Sentence completion, Instructions; Verbal analogies, Word groups; Critical reasoning, Verbal deduction.  Numerical computation; Numerical reasoning; Numerical estimation; Data interpretation. 


GATE Exam Pattern

GATE Exam Pattern for Instrumentation Engineering 2025

  • Mode of Examination: Online
  • Duration of Exam: 3 hours
  • Types of Questions: MCQs and NAT
  • Sections: 12 sections in GATE Instrumentation Engineering
  • Total Questions: 65 questions
  • Total Marks: 100 marks
Section  Total Marks
General Aptitude 15% of the total marks
Engineering Mathematics 13% of the total marks

Core Discipline- IN

  • Electricity and Magnetism
  • Electrical Circuits and Machines
  • Signals and Systems
  • Control Systems
  • Analog Electronics
  • Digital Electronics
  • Measurements
  • Sensors and Industrial Instrumentation
72% of the total marks

GATE Instrumentation Engineering Marking Scheme 2025 

  • Correct Answer: 1 or 2 Marks
  • Negative Marking: For MCQs only
Type of question Negative marking for wrong answer
MCQs 1/3 for 1 mark questions 2/3 for 2 marks questions
NATs, MSQs No negative marking 

Check Detailed GATE 2025 Exam Pattern


GATE IN Topic-wise Weightage

GATE Instrumentation Engineering: Topic-wise Weightage

GATE IN Topics Weightage Number of Questions Sub-Topics Covered
General Aptitude 15% 10 --
Engineering Mathematics 11% 7 Complex variable Probability density, limit, Determinant function
Network Theory 4% 3 --
Digital Circuits 8% 5 ATOD or D/A converter, flash type ADC, multiplexer
Signals and Systems 8% 5 Laplace transformer, Basic properties of signal
Control Systems 6% 4 Time response Analysis
Measurements 12% 8 AC, bridge
Analog Circuits 8% 5 Application of op-amp amplifier
Communication 3% 2 --
Transducers 8% 5 Pressure measurement, temperature measurement, resistive, capacitive and inductive transducer
Optical Instrumentation 5% 3 Laser, optical fiber, interferometer
Process Control 1% 1 PID controller

GATE IN Sample Questions

Check Previous Years’ GATE Question Papers for more questions


GATE IN Books

Best Books for GATE 2025 Instrumentation Engineering

Title of the book Name of the Author/ Publication
GATE: Instrumentation Engineering Previous Solved Papers GKP
Instrumentation Engineering GATE  Arihant Experts
GATE – Guide – Instrumentation Engineering GKP

Frequently Asked Questions

GATE Syllabus for Instrumentation Engineering 2025 FAQs

Ques:How tough is GATE Instrumentation Engineering paper?

Ans: As per students who had appeared in previous years the difficulty level of GATE Instrumentation Engineering paper is moderate. Topic-wise difficulty based on the experience of candidates is mentioned below:

  • Network, Control System, Signal and System, General Awareness – Rated Easy
  • Digital and MicroProcessor, Transducer, Measurements, Optical Instrumentation, Engineering Mathematics – Rated Moderate
  • Analog Circuits, Communication Systems – Rated Tough

Ques: What will be the sectional weightage of GATE 2025 Instrumentation Engineering syllabus?

Ans: The sectional weightage of GATE 2025 Instrumentation Engineering syllabus is as follows:

Section  Total Marks
General Aptitude 15% of the total marks
Engineering Mathematics 13% of the total marks
Subject-Based (IN) 72% of the total marks

Ques: Will there be any negative marking in GATE 2025 Instrumentation Engineering paper?

Ans: Yes. There will be negative marking for incorrect MCQs whereas for incorrect NAT questions no negative marking will be there. 

Type of question Negative marking for wrong answer
MCQs 1/3 for 1 mark questions, 2/3 for 2 marks questions
NATs/MSQs No Negative Marking

Ques: Do I need to prepare some other topics also to score well in GATE Instrumentation Engineering paper 2025?

Ans: No. There is no need to study other than the topics mentioned in the official syllabus. The syllabus of GATE Instrumentation Engineering paper is based on the graduation level. If you follow the syllabus prescribed by authorities then you can score very good marks. There is no need to study any extra topic. However, to clear your basic concepts you can go through those topics that are mentioned in the syllabus. 

Ques: What is the best way to complete GATE 2025 Instrumentation Engineering syllabus?

Ans: You can complete your syllabus by using your graduation level books or notes. You can also refer to some other books also like Instrumentation Engineering GATE 2020 – by Arihant. 

Ques. What is the GATE instrumentation paper pattern?

Ans. The GATE Instrumentation paper will consist of 65 questions, out of which 8 questions will be from Engineering Mathematics and 10 questions will be from General Aptitude. 

Ques. How can I prepare for the GATE instrumentation engineering paper?

Ans. Candidates can follow some of these tips for preparation of GATE Instrumentation paper: 

  • Solve GATE Instrumentation Engineering Mock Tests
  • Start with the basic concepts or topics. 
  • Candidates must practice on virtual calculators so that you can develop a habit of using the same.
  • For more tips, check GATE Preparation Guidelines

Ques. Who will conduct the GATE 2025 Instrumentation engineering exam?

Ans. The GATE 2025 Instrumentation engineering exam will be conducted by IIT Kanpur

Ques. Is it possible to give GATE for two subjects, with GATE Instrumentation paper? 

Ans. Yes, the candidates who are appearing for GATE Instrumentation Engineering paper can also appear for any one of the following papers i.e., GATE Electronics and Communication Engineering, GATE Electrical Engineering or GATE Physics.

*The article might have information for the previous academic years, which will be updated soon subject to the notification issued by the University/College.

GATE 2025 : 13 answered questions

View All

Ques. What should I do after doing math honors from DU?

● Top Answer By Rithvik Singh on 10 Oct 22

In general, a BSc (Hons) in Math is a good course that leads to a variety of career opportunities, including -  Masters: After completing a BSc Hons in Mathematics, one can pursue a MSc in Mathematics, Statistics, Operational Research, Pure Mathematics, Applied Mathematics, Mathematics and Computing, or Mathematics and Computing. Some prestigious institutes that offer MSc in Mathematics include IITs, IISER, IISc Bangalore, Tata Institute of Fundamental Research, University of Hyderabad, and Chennai Mathematical Institute MBA: Following a BSc Hons in Math, an MBA is a good option for starting your career. Actuarial Science: If you want a job right after graduation, pursuing and passing at least three actuarial science exams will get you a good job. MCA / CODING: The IT industry is one of the fastest growing in INDIA, with many job opportunities available after a BSc Hons in Math. You can pursue IT jobs if you know a little coding, or you can pursue MCA, for which you will have to give NIMCET exams. Teaching: After completing your BSc Hons, you can pursue a career in education by taking the B.ED or, if you want to be a professor or lecturer, the JRF or NET exam. There are various other scopes available for students. They can also pursue a career in Research, go for Government Jobs (SSC), DRDO, ISRO, and so on....Read more

0
0
1 Answer
•••

Ques. What is the minimum salary in Italy?

● Top Answer By Neha Pareek on 28 Dec 22

In Italy, the average monthly salary for an employee is around 3,650 EUR (3.20 lakhs INR). The lowest average salary is 920 EU (80,769 INR), and the highest is 16,300 EU (14.30 lakhs INR)...Read more

1
0
1 Answer
•••

Ques. What are the cut off marks in gate for iit indore?

● Top Answer By Jyoti Chopra on 17 Jun 23

IIT Indore GATE Cutoss 2023 has not been released officially IIT Kanpur will release the GATE 2023 cutoff for IIT Indore Students having valid GATE scores from 2023, 2022, or 2021 will be eligible for admission to MTech courses. Considering the IIT Indore GATE cutoff for 2021, The overall cutoff for GATE is 615 - 740 marks. Here is the branch-wise cutoff M.Tech Material Science and Engineering 615 M.Tech Communication and Signal Processing 657 M.Tech VLSI Design and Nanoelectronics 670 M.Tech Production & Industrial Engineering 740 Please note that the above cutoff is only for the general category....Read more

0
0
1 Answer
•••

Ques. How many intakes are there for Italy?

● Top Answer By Abhimanyu Pareek on 28 Dec 22

There are two intakes each year for admission to Italian universities. The first one starts in September and lasts until January or February. This intake is popularly known as the Fall Intake. The second semester begins in February and runs through July, which is referred to as the Winter Intake....Read more

0
0
1 Answer
•••

Ques. How can I get a scholarship to study in Italy?

● Top Answer By Purnima Solanki on 28 Dec 22

To find out more about eligibility requirements and the initial steps for applying for scholarships in Italy , you should first schedule a meeting with your university's study abroad office. If your university doesn't have a study abroad office, you might be able to get help from your academic advisor or the financial aid office....Read more

0
0
1 Answer
•••

Comments



No Comments To Show