NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise

Namrata Das logo

Namrata Das Exams Prep Master

Exams Prep Master

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions covers solutions for all Miscellaneous exercise questions. Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise includes the questions from the introduction, basic trigonometric functions concepts, and properties of inverse trigonometric functions. NCERT has provided a total of 17 problems and solutions on the important topics covered in this chapter.

Download PDF NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise

NCERT Solutions for Class 12 Maths Chapter 2: Important Topics

Important topics covered in the Inverse Trigonometric Functions chapter are as follows:

  • Sine Function
  • Cosine Function
  • Tangent Function
  • Secant Function
  • Cotangent Function
  • Cosecant Function
  • Properties of Inverse Trigonometric Functions

Also check: NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions

Other Exercise Solutions of Class 12 Maths Chapter 2 Inverse Trigonometric Functions

Exercise 2.1 Solutions 14 Questions (12 Short Answers, 2 MCQs)
Exercise 2.2 Solutions 21 Questions (18 Short Answers, 3 MCQs)
Miscellaneous Exercise Solutions 17 Questions (14 Short Answers, 3 MCQs)

Chapter 2 Inverse Trigonometric Functions Topics:

CBSE Class 12 Mathematics Study Guides:

CBSE CLASS XII Related Questions

  • 1.
    $ \int \frac{e^{10 \log x} - e^{8 \log x}}{e^{6 \log x} - e^{5 \log x}} \, dx$ is equal to :

      • $x + C$
      • $\frac{x^2}{2} + C$
      • $\frac{x^4}{4} + C$
      • $\frac{x^3}{3} + C$

    • 2.

      The given graph illustrates:

        • $y = \tan^{-1} x$
        • $y = \csc^{-1} x$
        • $y = \cot^{-1} x$
        • $y = \sec^{-1} x$

      • 3.
        Find \( \int \frac{3x + 1}{(x - 2)^2 (x + 2)} \, dx \)


          • 4.
            Solve the differential equation \( (x - \sin y) \, dy + (\tan y) \, dx = 0 \), given \( y(0) = 0 \).


              • 5.
                Evaluate \( \int_0^{\frac{\pi}{2}} \frac{x}{\cos x + \sin x} \, dx \)


                  • 6.
                    Let \[ A = \begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} 3 & 4 & 2 \\ 12 & 16 & 8 \\ -6 & -8 & -4 \end{pmatrix}. \] Then, find the matrix $B$ if $AB = C$.

                      CBSE CLASS XII Previous Year Papers

                      Comments


                      No Comments To Show