NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Exercise 2.1

Namrata Das logo

Namrata Das

Exams Prep Master

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Exercise 2.1 is included in this article. Chapter 2 Inverse Trigonometric Functions Exercise covers all the questions from the introduction and basic trigonometric functions concepts.

  • NCERT Solutions for Class 12 Maths Chapter 2, which will carry a weightage of around 4-8 marks in the CBSE Term 2 Exam 2022, comprises a total of three exercises. 
  • NCERT has provided around 14 problems and solutions based on the important topics. 

Download PDF NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Exercise 2.1

NCERT Solutions for Class 12 Maths Chapter 2: Important Topics

Important topics covered in the Inverse Trigonometric Functions chapter are:

  • Sine Function
  • Cosine Function
  • Tangent Function
  • Secant Function
  • Cotangent Function
  • Cosecant Function
  • Properties of Inverse Trigonometric Functions

Also check: NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions

Other Exercise Solutions of Class 12 Maths Chapter 2 Inverse Trigonometric Functions

Exercise 2.2 Solutions 21 Questions (18 Short Answers, 3 MCQs)
Miscellaneous Exercise Solutions 17 Questions (14 Short Answers, 3 MCQs)

Chapter 2 Inverse Trigonometric Functions Topics:

CBSE Class 12 Mathematics Study Guides:

CBSE CLASS XII Related Questions

1.
Find the vector and the cartesian equations of the lines that pass through the origin and(5,-2,3).

      2.
      Find the following integral: \(\int (ax^2+bx+c)dx\)

          3.
          For what values of x,\(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\)\(\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 & 1 \\1&0&2 \end{bmatrix}\)\(\begin{bmatrix} 0 \\2\\x\end{bmatrix}\)=O?

              4.

               If \(\frac{d}{dx}f(x) = 4x^3-\frac{3}{x^4}\) such that \(f(2)=0\), then \(f(x)\) is

                • \(x^4+\frac{1}{x^3}-\frac{129}{8}\)

                • \(x^3+\frac{1}{x^4}+\frac{129}{8}\)

                • \(x^4+\frac{1}{x^3}+\frac{129}{8}\)

                • \(x^3+\frac{1}{x^4}-\frac{129}{8}\)

                5.
                If A'= \(\begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 &1 \end{bmatrix}\)\(\begin{bmatrix}  -1 & 2 & 1 \\ 1 &2 & 3\end{bmatrix}\) , then verify that 
                (i) \((A+B)'=A'+B' \)
                (ii) \((A-B)'=A'-B'\)

                    6.

                    If A=\(\begin{bmatrix}2&-1&1\\-1&2&-1\\1&-1&2\end{bmatrix}\)verify that A3-6A2+9A-4 I=0 and hence find A-1 

                        CBSE CLASS XII Previous Year Papers

                        Comments



                        No Comments To Show