NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Exercise 2.2

Namrata Das logo

Namrata Das

Exams Prep Master

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Exercise 2.2 is covered in this article. This chapter 2 Inverse Trigonometric Functions Exercise includes the questions from elementary properties of inverse trigonometric functions. NCERT has provided a total of 21 problems and solutions based on the important topic. 

Download PDF NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Exercise 2.2

NCERT Solutions for Class 12 Maths Chapter 2: Important Topics

Important topics covered in the Inverse Trigonometric Functions chapter are as follows:

  • Sine Function
  • Cosine Function
  • Tangent Function
  • Secant Function
  • Cotangent Function
  • Cosecant Function
  • Properties of Inverse Trigonometric Functions

Also check: NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions

Other Exercise Solutions of Class 12 Maths Chapter 2 Inverse Trigonometric Functions

Exercise 2.1 Solutions 14 Questions (12 Short Answers, 2 MCQs)
Exercise 2.2 Solutions 21 Questions (18 Short Answers, 3 MCQs)
Miscellaneous Exercise Solutions 17 Questions (14 Short Answers, 3 MCQs)

Chapter 2 Inverse Trigonometric Functions Topics:

CBSE Class 12 Mathematics Study Guides:

CBSE CLASS XII Related Questions

1.

Let A=\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\),show that(aI+bA)n=anI+nan-1bA,where I is the identity matrix of order 2 and n∈N

      2.
      Let f: R→R be defined as f(x) = 3x. Choose the correct answer.

        • f is one-one onto
        • f is many-one onto
        • f is one-one but not onto
        • f is neither one-one nor onto

        3.

        Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta  &-sin\alpha \\   -sin\beta&cos\beta  &0 \\   sin\alpha cos\beta&sin\alpha\sin\beta  &cos\alpha  \end{vmatrix}\)

            4.
            Find the inverse of each of the matrices,if it exists. \(\begin{bmatrix} 2 &  3\\ 5 & 7 \end{bmatrix}\)

                5.
                Find the inverse of each of the matrices,if it exists \(\begin{bmatrix} 2 & 1 \\ 7 & 4  \end{bmatrix}\)

                    6.

                     If \(\frac{d}{dx}f(x) = 4x^3-\frac{3}{x^4}\) such that \(f(2)=0\), then \(f(x)\) is

                      • \(x^4+\frac{1}{x^3}-\frac{129}{8}\)

                      • \(x^3+\frac{1}{x^4}+\frac{129}{8}\)

                      • \(x^4+\frac{1}{x^3}+\frac{129}{8}\)

                      • \(x^3+\frac{1}{x^4}-\frac{129}{8}\)

                      CBSE CLASS XII Previous Year Papers

                      Comments



                      No Comments To Show