NCERT Solutions for Class 12 Maths Chapter 4 Determinants

Jasmine Grover logo

Jasmine Grover Content Strategy Manager

Content Strategy Manager

NCERT Solutions for Class 12 Maths Chapter 4 Determinants covers important concepts of Determinants of a matrix and inverse of a matrix. A determinant of the matrix is a scalar value that is calculated using a square matrix. To every square matrix, we can associate a number that is real or complex. The determinant is denoted by det A or |A|. The NCERT Solutions of Chapter 4 Determinants deals with properties of determinants, area of a triangle, minors and cofactors, and applications of matrices and determinants.

The unit algebra comprising Chapter 3 Matrices and Chapter 4 Determinants has a weightage of 10 marks in the final CBSE Board examination. The questions asked from the chapter generally include adjoint and inverse matrices, finding the determinants of a given matrix, and solving a system of linear equations in two or three variables

Download PDF: NCERT Solutions for Chapter 4 Determinants


NCERT Solutions for Class 12 Mathematics Chapter 4 Determinants

NCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 Determinants

Important Topics in Class 12 Mathematics Chapter 4 Determinants

  • Each square matrix of the order n can associate a number known as determinants of the square matrix A. It can be of orders one, two, and three.
  1. Determinant of order one: Consider a matrix A = [a], the determinant of this matrix is equal to a.
  1. Determinant of order two: If the order of the matrix is 2, and the given matrix A is-  \([ \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22}\\ \end{matrix} ]\)
    Determinant of A, |A| = \(| \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22}\\ \end{matrix} |\), = a11.a22 - a21.a12
  1. Determinant of order three:  If the order of the matrix is 2, and the given matrix A is-  \([ \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{matrix} ]\)
    Determinant of A, |A| = a11 a22 a33 – a11 a23 a32 – a12 a21 a33 + a12 a23 a31 + a13 a21 a32 – a13 a31 a22
  •  The area of a triangle with vertices (x1, y1), (x2, y2) and (x3, y3) is given by – A = ½ [x1(y2–y3) + x2(y3–y1) + x3(y1–y2)].

We can find the area of a triangle using determinants by \(\begin{array}{l}\Delta = \frac{1}{2}\begin{vmatrix} x_{1} & y_{1} & 1\\ x_{2} & y_{2} & 1\\ x_{3} & y_{3} & 1 \end{vmatrix}\end{array}\)
  • Minors and Cofactors: Suppose \(\begin{array}{l}\Delta = \begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}\end{array}\)

Minor = \(\begin{array}{l}M_{f}=\begin{vmatrix} a & b\\ g & h \end{vmatrix}\end{array}\), Mf = a.h – b.g

Cofactor of an element aij in determinant is defined as Aij= (-1)i+jMij


NCERT Solutions For Class 12 Maths Chapter 4 Exercises:

The detailed solutions for all the NCERT Solutions for Chapter 4 Determinants under different exercises are as follows:


Also Read:

Check-Out: 

CBSE CLASS XII Related Questions

  • 1.
    If \( \mathbf{a} \) and \( \mathbf{b} \) are position vectors of two points \( P \) and \( Q \) respectively, then find the position vector of a point \( R \) in \( QP \) produced such that \[ QR = \frac{3}{2} QP. \]


      • 2.
        Determine those values of $x$ for which $f(x) = \frac{2}{x} - 5$, $x \ne 0$ is increasing or decreasing.


          • 3.
            Let $\mathbf{| \mathbf{a} |} = 5$ and $-2 \leq z \leq 1$. Then, the range of $|\mathbf{a}|$ is:

              • $[5, 10]$
              • $[-2, 5]$
              • $[2, 1]$
              • $[-10, 5]$

            • 4.
              Using integration, find the area of the region bounded by the line \[ y = 5x + 2, \] the \( x \)-axis, and the ordinates \( x = -2 \) and \( x = 2 \).


                • 5.
                  The area of the shaded region (figure) represented by the curves \( y = x^2 \), \( 0 \leq x \leq 2 \), and the y-axis is given by:
                  The area of the shaded region

                    • \( \int_0^2 x^2 \, dx \)
                    • \( \int_0^2 \sqrt{y} \, dy \)
                    • \( \int_0^4 x^2 \, dx \)
                    • \( \int_0^4 \sqrt{y} \, dy \)

                  • 6.
                    $ \int \frac{e^{10 \log x} - e^{8 \log x}}{e^{6 \log x} - e^{5 \log x}} \, dx$ is equal to :

                      • $x + C$
                      • $\frac{x^2}{2} + C$
                      • $\frac{x^4}{4} + C$
                      • $\frac{x^3}{3} + C$
                    CBSE CLASS XII Previous Year Papers

                    Comments


                    No Comments To Show