NCERT Solutions for Class 12 Maths Chapter 4 Determinants

Jasmine Grover logo

Jasmine Grover

Content Strategy Manager

NCERT Solutions for Class 12 Maths Chapter 4 Determinants covers important concepts of Determinants of a matrix and inverse of a matrix. A determinant of the matrix is a scalar value that is calculated using a square matrix. To every square matrix, we can associate a number that is real or complex. The determinant is denoted by det A or |A|. The NCERT Solutions of Chapter 4 Determinants deals with properties of determinants, area of a triangle, minors and cofactors, and applications of matrices and determinants.

The unit algebra comprising Chapter 3 Matrices and Chapter 4 Determinants has a weightage of 10 marks in the final CBSE Board examination. The questions asked from the chapter generally include adjoint and inverse matrices, finding the determinants of a given matrix, and solving a system of linear equations in two or three variables

Download PDF: NCERT Solutions for Chapter 4 Determinants


NCERT Solutions for Class 12 Mathematics Chapter 4 Determinants

NCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 Determinants

Important Topics in Class 12 Mathematics Chapter 4 Determinants

  • Each square matrix of the order n can associate a number known as determinants of the square matrix A. It can be of orders one, two, and three.
  1. Determinant of order one: Consider a matrix A = [a], the determinant of this matrix is equal to a.
  1. Determinant of order two: If the order of the matrix is 2, and the given matrix A is-  \([ \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22}\\ \end{matrix} ]\)
    Determinant of A, |A| = \(| \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22}\\ \end{matrix} |\), = a11.a22 - a21.a12
  1. Determinant of order three:  If the order of the matrix is 2, and the given matrix A is-  \([ \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{matrix} ]\)
    Determinant of A, |A| = a11 a22 a33 – a11 a23 a32 – a12 a21 a33 + a12 a23 a31 + a13 a21 a32 – a13 a31 a22
  •  The area of a triangle with vertices (x1, y1), (x2, y2) and (x3, y3) is given by – A = ½ [x1(y2–y3) + x2(y3–y1) + x3(y1–y2)].

We can find the area of a triangle using determinants by \(\begin{array}{l}\Delta = \frac{1}{2}\begin{vmatrix} x_{1} & y_{1} & 1\\ x_{2} & y_{2} & 1\\ x_{3} & y_{3} & 1 \end{vmatrix}\end{array}\)
  • Minors and Cofactors: Suppose \(\begin{array}{l}\Delta = \begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}\end{array}\)

Minor = \(\begin{array}{l}M_{f}=\begin{vmatrix} a & b\\ g & h \end{vmatrix}\end{array}\), Mf = a.h – b.g

Cofactor of an element aij in determinant is defined as Aij= (-1)i+jMij


NCERT Solutions For Class 12 Maths Chapter 4 Exercises:

The detailed solutions for all the NCERT Solutions for Chapter 4 Determinants under different exercises are as follows:


Also Read:

Check-Out: 

CBSE CLASS XII Related Questions

1.
Find the inverse of each of the matrices,if it exists \(\begin{bmatrix} 2 & 1 \\ 7 & 4  \end{bmatrix}\)

      2.
      For what values of x,\(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\)\(\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 & 1 \\1&0&2 \end{bmatrix}\)\(\begin{bmatrix} 0 \\2\\x\end{bmatrix}\)=O?

          3.

          Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta  &-sin\alpha \\   -sin\beta&cos\beta  &0 \\   sin\alpha cos\beta&sin\alpha\sin\beta  &cos\alpha  \end{vmatrix}\)

              4.
              Find the following integral: \(\int (ax^2+bx+c)dx\)

                  5.
                  Find the inverse of each of the matrices,if it exists. \(\begin{bmatrix} 2 &  3\\ 5 & 7 \end{bmatrix}\)

                      6.
                      If (i) A=\(\begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{bmatrix}\),then verify that A'A=I
                      (ii) A= \(\begin{bmatrix} \sin\alpha & \cos\alpha\\ -\cos \alpha & \sin\alpha \end{bmatrix}\),then verify that A'A=I

                          CBSE CLASS XII Previous Year Papers

                          Comments



                          No Comments To Show