NCERT Solutions for Class 12 Chapter 13 Probability Exercise 13.5

Collegedunia Team logo

Collegedunia Team

Content Curator

Class 12 Maths NCERT Solutions Chapter 13 Probability Exercise 13.5 is based on Bernoulli Trials and Binomial Distribution. 

Bernoulli Trials must satisfy the following conditions:

  1. There should be a finite number of trials.
  2. Trials should be conducted independently.
  3. Each trial has exactly two outcomes: success or failure.
  4. Probability of success remains the same in each trial.

Download PDF NCERT Solutions for Class 12 Maths Chapter 13 Probability Exercise 13.5

Check out the solutions of Class 12 Maths NCERT solutions Chapter 13 Probability Exercise 13.5

Read More: NCERT Solutions For Class 12 Mathematics Chapter 13 Probability

Also check other Exercise Solutions of Class 12 Maths Chapter 13 Probability

Also Read:

Also Read:

CBSE CLASS XII Related Questions

1.

If A=\(\begin{bmatrix}2&-1&1\\-1&2&-1\\1&-1&2\end{bmatrix}\)verify that A3-6A2+9A-4 I=0 and hence find A-1 

      2.
      Let f: R→R be defined as f(x) = 3x. Choose the correct answer.

        • f is one-one onto
        • f is many-one onto
        • f is one-one but not onto
        • f is neither one-one nor onto

        3.
        Find the inverse of each of the matrices, if it exists. \(\begin{bmatrix} 1 &  3\\ 2 & 7\end{bmatrix}\)

            4.
            If A'= \(\begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 &1 \end{bmatrix}\)\(\begin{bmatrix}  -1 & 2 & 1 \\ 1 &2 & 3\end{bmatrix}\) , then verify that 
            (i) \((A+B)'=A'+B' \)
            (ii) \((A-B)'=A'-B'\)

                5.

                 If \(\frac{d}{dx}f(x) = 4x^3-\frac{3}{x^4}\) such that \(f(2)=0\), then \(f(x)\) is

                  • \(x^4+\frac{1}{x^3}-\frac{129}{8}\)

                  • \(x^3+\frac{1}{x^4}+\frac{129}{8}\)

                  • \(x^4+\frac{1}{x^3}+\frac{129}{8}\)

                  • \(x^3+\frac{1}{x^4}-\frac{129}{8}\)

                  6.
                  For what values of x,\(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\)\(\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 & 1 \\1&0&2 \end{bmatrix}\)\(\begin{bmatrix} 0 \\2\\x\end{bmatrix}\)=O?

                      CBSE CLASS XII Previous Year Papers

                      Comments



                      No Comments To Show