NCERT Solutions for Class 12 Chapter 13 Probability Exercise 13.2

Collegedunia Team logo

Collegedunia Team

Content Curator

Class 12 Maths NCERT Solutions Chapter 13 Probability Exercise 13.2 is based on following concepts: Multiplication Theorem on Probability and Independent Events

Independent events are two events wherein the probability of occurrence of one of them is not affected by the occurrence of the other are called independent events.

Download PDF NCERT Solutions for Class 12 Maths Chapter 13 Probability Exercise 13.2

Check out the solutions of Class 12 Maths NCERT solutions Chapter 13 Probability Exercise 13.2

Read More: NCERT Solutions For Class 12 Mathematics Chapter 13 Probability

Also check other Exercise Solutions of Class 12 Maths Chapter 13 Probability

Also Read:

Also Read:

CBSE CLASS XII Related Questions

1.

 If \(\frac{d}{dx}f(x) = 4x^3-\frac{3}{x^4}\) such that \(f(2)=0\), then \(f(x)\) is

    • \(x^4+\frac{1}{x^3}-\frac{129}{8}\)

    • \(x^3+\frac{1}{x^4}+\frac{129}{8}\)

    • \(x^4+\frac{1}{x^3}+\frac{129}{8}\)

    • \(x^3+\frac{1}{x^4}-\frac{129}{8}\)

    2.
    If (i) A=\(\begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{bmatrix}\),then verify that A'A=I
    (ii) A= \(\begin{bmatrix} \sin\alpha & \cos\alpha\\ -\cos \alpha & \sin\alpha \end{bmatrix}\),then verify that A'A=I

        3.
        Find the inverse of each of the matrices,if it exists \(\begin{bmatrix} 2 & 1 \\ 7 & 4  \end{bmatrix}\)

            4.
            Find the inverse of each of the matrices, if it exists. \(\begin{bmatrix} 1 &  3\\ 2 & 7\end{bmatrix}\)

                5.
                For what values of x,\(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\)\(\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 & 1 \\1&0&2 \end{bmatrix}\)\(\begin{bmatrix} 0 \\2\\x\end{bmatrix}\)=O?

                    6.
                    By using the properties of definite integrals, evaluate the integral: \(∫_0^π log(1+cosx)dx\)

                        CBSE CLASS XII Previous Year Papers

                        Comments



                        No Comments To Show