NCERT Solutions for Class 11 Maths Chapter 12 Miscellaneous Exercises

Collegedunia Team logo

Collegedunia Team

Content Curator

Class 11 Maths NCERT Solutions Chapter 12 Introduction to Three Dimensional Geometry Miscellaneous Exercises is based on the following concepts:

  • Coordinate Axes and Coordinate Planes in Three Dimensional Space
  • Coordinates of a Point in Space
  • Distance between Two Points
  • Section Formula

Download PDF NCERT Solutions for Class 12 Introduction to Three Dimensional Geometry Miscellaneous Exercises

Check out the solutions of Class 11 Maths NCERT Solutions Chapter 12 Introduction to Three Dimensional Geometry Miscellaneous Exercises

Read More: NCERT Solutions For Class 11 Maths Chapter 12 Introduction to Three Dimensional Geometry

Also check other Exercise Solutions of Class 11 Maths Chapter 12 Introduction to Three Dimensional Geometry

Also check:

Also check:

CBSE CLASS XII Related Questions

1.
Find the vector and the cartesian equations of the lines that pass through the origin and(5,-2,3).

      2.

      Let A=\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\),show that(aI+bA)n=anI+nan-1bA,where I is the identity matrix of order 2 and n∈N

          3.
          If A'= \(\begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 &1 \end{bmatrix}\)\(\begin{bmatrix}  -1 & 2 & 1 \\ 1 &2 & 3\end{bmatrix}\) , then verify that 
          (i) \((A+B)'=A'+B' \)
          (ii) \((A-B)'=A'-B'\)

              4.
              By using the properties of definite integrals, evaluate the integral: \(∫_0^π log(1+cosx)dx\)

                  5.
                  If (i) A=\(\begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{bmatrix}\),then verify that A'A=I
                  (ii) A= \(\begin{bmatrix} \sin\alpha & \cos\alpha\\ -\cos \alpha & \sin\alpha \end{bmatrix}\),then verify that A'A=I

                      6.

                      Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta  &-sin\alpha \\   -sin\beta&cos\beta  &0 \\   sin\alpha cos\beta&sin\alpha\sin\beta  &cos\alpha  \end{vmatrix}\)

                          CBSE CLASS XII Previous Year Papers

                          Comments



                          No Comments To Show