NCERT Solutions for Class 11 Maths Chapter 11 Exercise 11.4

Collegedunia Team logo

Collegedunia Team

Content Curator

CBSE CLASS XII Related Questions

1.
Let f: R→R be defined as f(x) = 3x. Choose the correct answer.

    • f is one-one onto
    • f is many-one onto
    • f is one-one but not onto
    • f is neither one-one nor onto

    2.

    Let A=\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\),show that(aI+bA)n=anI+nan-1bA,where I is the identity matrix of order 2 and n∈N

        3.
        If (i) A=\(\begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{bmatrix}\),then verify that A'A=I
        (ii) A= \(\begin{bmatrix} \sin\alpha & \cos\alpha\\ -\cos \alpha & \sin\alpha \end{bmatrix}\),then verify that A'A=I

            4.

             If \(\frac{d}{dx}f(x) = 4x^3-\frac{3}{x^4}\) such that \(f(2)=0\), then \(f(x)\) is

              • \(x^4+\frac{1}{x^3}-\frac{129}{8}\)

              • \(x^3+\frac{1}{x^4}+\frac{129}{8}\)

              • \(x^4+\frac{1}{x^3}+\frac{129}{8}\)

              • \(x^3+\frac{1}{x^4}-\frac{129}{8}\)

              5.
              Find the following integral: \(\int (ax^2+bx+c)dx\)

                  6.

                  Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta  &-sin\alpha \\   -sin\beta&cos\beta  &0 \\   sin\alpha cos\beta&sin\alpha\sin\beta  &cos\alpha  \end{vmatrix}\)

                      CBSE CLASS XII Previous Year Papers

                      Comments



                      No Comments To Show