NCERT Solutions for Class 11 Maths Chapter 5 Exercise 5.3

Collegedunia Team logo

Collegedunia Team

Content Curator

Class 11 Maths NCERT Solutions Chapter 5 Complex Numbers and Quadratic Equations Exercise 5.3 is based on Quadratic Equations.

Download PDF NCERT Solutions for Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations Exercise 5.3

Check out the solutions of Class 11 Maths NCERT solutions Chapter 5 Complex Numbers and Quadratic Equations Exercise 5.3

Read More: NCERT Solutions For Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations

Also check other Exercise Solutions of Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations

Also check:

Also check:

CBSE CLASS XII Related Questions

1.

Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta  &-sin\alpha \\   -sin\beta&cos\beta  &0 \\   sin\alpha cos\beta&sin\alpha\sin\beta  &cos\alpha  \end{vmatrix}\)

      2.
      For what values of x,\(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\)\(\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 & 1 \\1&0&2 \end{bmatrix}\)\(\begin{bmatrix} 0 \\2\\x\end{bmatrix}\)=O?

          3.
          By using the properties of definite integrals, evaluate the integral: \(∫_0^π log(1+cosx)dx\)

              4.
              If A'= \(\begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 &1 \end{bmatrix}\)\(\begin{bmatrix}  -1 & 2 & 1 \\ 1 &2 & 3\end{bmatrix}\) , then verify that 
              (i) \((A+B)'=A'+B' \)
              (ii) \((A-B)'=A'-B'\)

                  5.
                  If (i) A=\(\begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{bmatrix}\),then verify that A'A=I
                  (ii) A= \(\begin{bmatrix} \sin\alpha & \cos\alpha\\ -\cos \alpha & \sin\alpha \end{bmatrix}\),then verify that A'A=I

                      6.
                      Find the inverse of each of the matrices,if it exists. \(\begin{bmatrix} 2 &  3\\ 5 & 7 \end{bmatrix}\)

                          CBSE CLASS XII Previous Year Papers

                          Comments



                          No Comments To Show