NCERT Solutions for Differential Equations Exercise 9.2 Solutions

Collegedunia Team logo

Collegedunia Team

Content Curator

Class 12 Maths NCERT Solutions Chapter 9 Differential Equations Exercise 9.2 is provided in the article. Class 12 Chapter 9 Differential Equations Exercises include questions on Order and Degree of Differential Equations.

Download PDF: NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.2

Read More: NCERT Solutions For Class 12 Mathematics Chapter 9 Differential Equations

Also check other Exercise Solutions of Class 12 Maths Chapter 9 Differential Equations

Also Read:

Also Read:

CBSE CLASS XII Related Questions

1.

 If \(\frac{d}{dx}f(x) = 4x^3-\frac{3}{x^4}\) such that \(f(2)=0\), then \(f(x)\) is

    • \(x^4+\frac{1}{x^3}-\frac{129}{8}\)

    • \(x^3+\frac{1}{x^4}+\frac{129}{8}\)

    • \(x^4+\frac{1}{x^3}+\frac{129}{8}\)

    • \(x^3+\frac{1}{x^4}-\frac{129}{8}\)

    2.
    If (i) A=\(\begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{bmatrix}\),then verify that A'A=I
    (ii) A= \(\begin{bmatrix} \sin\alpha & \cos\alpha\\ -\cos \alpha & \sin\alpha \end{bmatrix}\),then verify that A'A=I

        3.
        If A'= \(\begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 &1 \end{bmatrix}\)\(\begin{bmatrix}  -1 & 2 & 1 \\ 1 &2 & 3\end{bmatrix}\) , then verify that 
        (i) \((A+B)'=A'+B' \)
        (ii) \((A-B)'=A'-B'\)

            4.

            Let A=\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\),show that(aI+bA)n=anI+nan-1bA,where I is the identity matrix of order 2 and n∈N

                5.
                Let f: R→R be defined as f(x) = 3x. Choose the correct answer.

                  • f is one-one onto
                  • f is many-one onto
                  • f is one-one but not onto
                  • f is neither one-one nor onto

                  6.

                  Solve system of linear equations, using matrix method.
                   x-y+2z=7
                   3x+4y-5z=-5
                   2x-y+3z=12

                      CBSE CLASS XII Previous Year Papers

                      Comments



                      No Comments To Show