NCERT Solutions for Class 12 Maths Chapter 6 Applications of Derivatives Exercise 6.5

Jasmine Grover logo

Jasmine Grover

Content Strategy Manager

NCERT Solutions for Class 12 Maths Chapter 6 Applications of Derivatives Exercise 6.5 is given in this article. Chapter 6 Exercise 6.5 includes questions that deal with concepts of maxima and minima and maximum and Minimum Values of a Function in a Closed Interval.

Download PDF: NCERT Solutions for Class 12 Maths Chapter 6 Exercise 6.5

Check out the Class 12 Maths NCERT solutions chapter 6 Exercise 6.5:

Read More: NCERT Solutions For Class 12 Mathematics Chapter 6 Applications of Derivatives

Check out other exercise solutions of Class 12 Maths Chapter 6 Applications of Derivatives:

Class 12 Chapter 6 Applications of Derivatives Topics:

CBSE Class 12 Mathematics Study Guides:

CBSE CLASS XII Related Questions

1.

 If \(\frac{d}{dx}f(x) = 4x^3-\frac{3}{x^4}\) such that \(f(2)=0\), then \(f(x)\) is

    • \(x^4+\frac{1}{x^3}-\frac{129}{8}\)

    • \(x^3+\frac{1}{x^4}+\frac{129}{8}\)

    • \(x^4+\frac{1}{x^3}+\frac{129}{8}\)

    • \(x^3+\frac{1}{x^4}-\frac{129}{8}\)

    2.

    If A=\(\begin{bmatrix}2&-1&1\\-1&2&-1\\1&-1&2\end{bmatrix}\)verify that A3-6A2+9A-4 I=0 and hence find A-1 

        3.
        Find the inverse of each of the matrices,if it exists \(\begin{bmatrix} 2 & 1 \\ 7 & 4  \end{bmatrix}\)

            4.
            If A'= \(\begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 &1 \end{bmatrix}\)\(\begin{bmatrix}  -1 & 2 & 1 \\ 1 &2 & 3\end{bmatrix}\) , then verify that 
            (i) \((A+B)'=A'+B' \)
            (ii) \((A-B)'=A'-B'\)

                5.
                Find the inverse of each of the matrices,if it exists. \(\begin{bmatrix} 2 &  3\\ 5 & 7 \end{bmatrix}\)

                    6.
                    Find the vector and the cartesian equations of the lines that pass through the origin and(5,-2,3).

                        CBSE CLASS XII Previous Year Papers

                        Comments



                        No Comments To Show