NCERT Solutions for Class 12 Maths Chapter 6 Applications of Derivatives Exercise 6.1

Jasmine Grover logo

Jasmine Grover

Content Strategy Manager

NCERT Solutions for Class 12 Maths Chapter 6 Applications of Derivatives Exercise 6.1 is given in this article. Chapter 6 Applications of Derivatives Exercise 6.1 includes questions on the introduction of derivatives and the rate of change of quantities. The exercise includes a total of 18 questions including 10 long questions, 6 short questions and 2 MCQs.

Download PDF: NCERT Solutions for Class 12 Maths Chapter 6 Exercise 6.1

Check out solutions of Class 12 Maths NCERT solutions chapter 6 Applications of Derivatives Exercise 6.1

Read More: NCERT Solutions For Class 12 Mathematics Chapter 6 Applications of Derivatives

Check out other exercise solutions of Class 12 Maths Chapter 6 Applications of Derivatives

Class 12 Chapter 6 Applications of Derivatives Topics:

CBSE Class 12 Mathematics Study Guides:

CBSE CLASS XII Related Questions

1.
Find the inverse of each of the matrices,if it exists \(\begin{bmatrix} 2 & 1 \\ 7 & 4  \end{bmatrix}\)

      2.
      Find the following integral: \(\int (ax^2+bx+c)dx\)

          3.
          If (i) A=\(\begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{bmatrix}\),then verify that A'A=I
          (ii) A= \(\begin{bmatrix} \sin\alpha & \cos\alpha\\ -\cos \alpha & \sin\alpha \end{bmatrix}\),then verify that A'A=I

              4.

              If A=\(\begin{bmatrix}2&-1&1\\-1&2&-1\\1&-1&2\end{bmatrix}\)verify that A3-6A2+9A-4 I=0 and hence find A-1 

                  5.

                   If \(\frac{d}{dx}f(x) = 4x^3-\frac{3}{x^4}\) such that \(f(2)=0\), then \(f(x)\) is

                    • \(x^4+\frac{1}{x^3}-\frac{129}{8}\)

                    • \(x^3+\frac{1}{x^4}+\frac{129}{8}\)

                    • \(x^4+\frac{1}{x^3}+\frac{129}{8}\)

                    • \(x^3+\frac{1}{x^4}-\frac{129}{8}\)

                    6.

                    Let A=\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\),show that(aI+bA)n=anI+nan-1bA,where I is the identity matrix of order 2 and n∈N

                        CBSE CLASS XII Previous Year Papers

                        Comments



                        No Comments To Show