NCERT Solutions for Class 12 Maths Chapter 4 Determinants Exercise 4.6

Jasmine Grover logo

Jasmine Grover

Content Strategy Manager

NCERT Solutions for Class 12 Maths Chapter 4 Determinants Exercise 4.6 is given in this article with a detailed explanation. Chapter 4 Determinants Exercise 4.6 covers concepts of applications of determinants and matrices and finding the solution of a given system of linear equations using an inverse of a matrix.

Download PDF NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.6

Check out solutions of Class 12 Maths NCERT solutions chapter 4 Determinants Exercise 4.6

Read More: NCERT Solutions For Class 12 Mathematics Chapter 4 Determinants

Check out other exercise solutions of Class 12 Maths Chapter 4 Determinants

Class 12 Maths Chapter 4 Determinants Topics:

CBSE Class 12 Maths Study Guides:

CBSE CLASS XII Related Questions

1.
Find the inverse of each of the matrices,if it exists. \(\begin{bmatrix} 2 &  3\\ 5 & 7 \end{bmatrix}\)

      2.
      Find the inverse of each of the matrices, if it exists. \(\begin{bmatrix} 1 &  3\\ 2 & 7\end{bmatrix}\)

          3.
          If A'= \(\begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 &1 \end{bmatrix}\)\(\begin{bmatrix}  -1 & 2 & 1 \\ 1 &2 & 3\end{bmatrix}\) , then verify that 
          (i) \((A+B)'=A'+B' \)
          (ii) \((A-B)'=A'-B'\)

              4.

              Let A=\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\),show that(aI+bA)n=anI+nan-1bA,where I is the identity matrix of order 2 and n∈N

                  5.
                  If (i) A=\(\begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{bmatrix}\),then verify that A'A=I
                  (ii) A= \(\begin{bmatrix} \sin\alpha & \cos\alpha\\ -\cos \alpha & \sin\alpha \end{bmatrix}\),then verify that A'A=I

                      6.

                       If \(\frac{d}{dx}f(x) = 4x^3-\frac{3}{x^4}\) such that \(f(2)=0\), then \(f(x)\) is

                        • \(x^4+\frac{1}{x^3}-\frac{129}{8}\)

                        • \(x^3+\frac{1}{x^4}+\frac{129}{8}\)

                        • \(x^4+\frac{1}{x^3}+\frac{129}{8}\)

                        • \(x^3+\frac{1}{x^4}-\frac{129}{8}\)

                        CBSE CLASS XII Previous Year Papers

                        Comments



                        No Comments To Show