NCERT Solutions for Class 12 Maths Chapter 4 Determinants Exercise 4.5

Jasmine Grover logo

Jasmine Grover

Content Strategy Manager

NCERT Solutions for Class 12 Maths Chapter 4 Determinants Exercise 4.5 is provided in this article with step by step explanation. Chapter 4 Exercise 4.5 has questions covering concepts of determinants such as how to find the inverse of a matrix using adjoint. The questions make use of many theorems to deal with the adjoint and Inverse of a Matrix.

Download PDF NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.5

Check out solutions of Class 12 Maths NCERT solutions chapter 4 Determinants Exercise 4.5

Read More: NCERT Solutions For Class 12 Mathematics Chapter 4 Determinants

Check out other exercise solutions of Class 12 Maths Chapter 4 Determinants

Class 12 Maths Chapter 4 Determinants Topics:

CBSE Class 12 Mathematics Study Guides:

CBSE CLASS XII Related Questions

1.
Find the inverse of each of the matrices, if it exists. \(\begin{bmatrix} 1 &  3\\ 2 & 7\end{bmatrix}\)

      2.
      If (i) A=\(\begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{bmatrix}\),then verify that A'A=I
      (ii) A= \(\begin{bmatrix} \sin\alpha & \cos\alpha\\ -\cos \alpha & \sin\alpha \end{bmatrix}\),then verify that A'A=I

          3.
          By using the properties of definite integrals, evaluate the integral: \(∫_0^π log(1+cosx)dx\)

              4.

              If A=\(\begin{bmatrix}2&-1&1\\-1&2&-1\\1&-1&2\end{bmatrix}\)verify that A3-6A2+9A-4 I=0 and hence find A-1 

                  5.

                   If \(\frac{d}{dx}f(x) = 4x^3-\frac{3}{x^4}\) such that \(f(2)=0\), then \(f(x)\) is

                    • \(x^4+\frac{1}{x^3}-\frac{129}{8}\)

                    • \(x^3+\frac{1}{x^4}+\frac{129}{8}\)

                    • \(x^4+\frac{1}{x^3}+\frac{129}{8}\)

                    • \(x^3+\frac{1}{x^4}-\frac{129}{8}\)

                    6.
                    Find the vector and the cartesian equations of the lines that pass through the origin and(5,-2,3).

                        CBSE CLASS XII Previous Year Papers

                        Comments



                        No Comments To Show