Content Curator | Updated On - Aug 29, 2024
CBSE Class 12 Physics Question Paper 2024 PDF (Set 2- 55/5/2) is available for download here. CBSE conducted the Physics exam on March 4, 2024, from 10:30 AM to 1:30 PM. The total marks for the theory paper are 70. The question paper contains 20% MCQ-based questions, 40% competency-based questions, and 40% short and long answer type questions. As per the students, the Physics exam was moderately difficult.
CBSE Class 12 Physics Question Paper 2024 (Set 2- 55/5/2) with Answer Key
CBSE Class 12 Physics Question Paper 2024 PDF | CBSE Class 12 Physics Answer Key 2024 PDF | CBSE Class 12 Physics Solution 2024 PDF |
---|---|---|
Download PDF | Download PDF | Download PDF |
CBSE CLASS XII Questions
1. A series LCR circuit with R = 20 W, L = 1.5 H and C = 35 μF is connected to a variable-frequency 200 V ac supply. When the frequency of the supply equals the natural frequency of the circuit, what is the average power transferred to the circuit in one complete cycle?
2. For what values of x,\(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\)\(\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 & 1 \\1&0&2 \end{bmatrix}\)\(\begin{bmatrix} 0 \\2\\x\end{bmatrix}\)=O?
3. Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)
4. If A'= \(\begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 &1 \end{bmatrix}\)\(\begin{bmatrix} -1 & 2 & 1 \\ 1 &2 & 3\end{bmatrix}\) , then verify that
(i) \((A+B)'=A'+B' \)
(ii) \((A-B)'=A'-B'\)
(i) \((A+B)'=A'+B' \)
(ii) \((A-B)'=A'-B'\)
6. If (i) A=\(\begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{bmatrix}\),then verify that A'A=I
(ii) A= \(\begin{bmatrix} \sin\alpha & \cos\alpha\\ -\cos \alpha & \sin\alpha \end{bmatrix}\),then verify that A'A=I
(ii) A= \(\begin{bmatrix} \sin\alpha & \cos\alpha\\ -\cos \alpha & \sin\alpha \end{bmatrix}\),then verify that A'A=I
Comments