NCERT Solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.5

Namrata Das logo

Namrata Das

Exams Prep Master

NCERT Solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.5 is covered in this article. Exercise 7.5 covers questions on the topic, Integration by Substitution, Integration using Partial Fractions, Integration by Parts. NCERT Solutions for Class 12 Maths Chapter 7 will carry a weightage of around 6-18 marks in the CBSE Term 2 Exam 2022. NCERT has provided a total of 23 problems and solutions based on the important topics.

Download PDF NCER Solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.5

NCERT Solutions for Class 12 Maths Chapter 7: Important Topics

Important topics covered in Integrals Chapter are:

  • Double Integral
  • Continuous Integration
  • Properties of Definite Integral
  • Line Integral
  • Integrals of Particular Function

Also check: NCERT Solutions for Class 12 Maths Chapter 7 Integrals 

Other Exercises Solutions of Class 12 Maths Chapter 7 Integrals

Chapter 7 Integrals Topics:

CBSE Class 12 Mathematics Study Guides:

CBSE CLASS XII Related Questions

1.

 If \(\frac{d}{dx}f(x) = 4x^3-\frac{3}{x^4}\) such that \(f(2)=0\), then \(f(x)\) is

    • \(x^4+\frac{1}{x^3}-\frac{129}{8}\)

    • \(x^3+\frac{1}{x^4}+\frac{129}{8}\)

    • \(x^4+\frac{1}{x^3}+\frac{129}{8}\)

    • \(x^3+\frac{1}{x^4}-\frac{129}{8}\)

    2.
    If (i) A=\(\begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{bmatrix}\),then verify that A'A=I
    (ii) A= \(\begin{bmatrix} \sin\alpha & \cos\alpha\\ -\cos \alpha & \sin\alpha \end{bmatrix}\),then verify that A'A=I

        3.
        Find the inverse of each of the matrices,if it exists. \(\begin{bmatrix} 2 &  3\\ 5 & 7 \end{bmatrix}\)

            4.
            Let f: R→R be defined as f(x) = 3x. Choose the correct answer.

              • f is one-one onto
              • f is many-one onto
              • f is one-one but not onto
              • f is neither one-one nor onto

              5.
              Find the inverse of each of the matrices, if it exists. \(\begin{bmatrix} 1 &  3\\ 2 & 7\end{bmatrix}\)

                  6.
                  If A'= \(\begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 &1 \end{bmatrix}\)\(\begin{bmatrix}  -1 & 2 & 1 \\ 1 &2 & 3\end{bmatrix}\) , then verify that 
                  (i) \((A+B)'=A'+B' \)
                  (ii) \((A-B)'=A'-B'\)

                      CBSE CLASS XII Previous Year Papers

                      Comments



                      No Comments To Show