Content Writer
Reduction formula important method of integration. It is effective in solving difficult and complex integration questions. It is used for various functions including trigonometric, logarithmic, exponential, and many others. To simplify the integration of these functions, the reduction formula comes into existence. These reduction formulas tend to calculate the solution of integral complex problems and help us to reduce the integral degree and evaluate the integrals in a limited number of steps. The reduction formula follows the rules of integration and is derived from the formulas of integration.
Read More: Applications of the Integrals
Key Terms: Integrals, Integration, Trigonometric, Logarithmic, Exponential, Algebraic Functions, Inverse Trigonometric Function
Formulas for Reduction in Integration
[Click Here for Sample Questions]
There are several types of reduction formulas that are required to solve complex problems related to different functions. The different types of reduction formulas include: Reduction Formula for Exponential Functions, Reduction Formula for Inverse Trigonometric Functions, Reduction Formulas For Trigonometric Functions, Reduction Formula for Algebraic Functions, Reduction Formula For Trigonometric Functions, Reduction Formula for Logarithmic Functions, and Reduction Formula for Hyperbolic Trigonometric Functions
Integrals Detailed Video Explanation
Read More: Integrals
Reduction Formula for Exponential Functions
[Click Here for Previous Year Questions]
- ∫ yn emy dy = 1/mynemy –n/m yn-1 emydy
- ∫ dy / sinhny = -1/n sinhn-1 y cosh y – (n-1/n) ∫ sinh n-2 y dy
- ∫ emy / yn dy = emy (n-1)yn-1 + m/n-1 ∫ emx/xn-1 y
- ∫ Sinhn ydy = -1/n Sin hn-1 cosh y – n-1/n ∫ Sinhn-2 y dy
Read More:
Relevant Concepts | ||
---|---|---|
Trigonometry | Mensuration | Geometry Formula |
Logarithm Formula | Geometry | Number Systems |
Midpoint Formula | Difference between in maths | Algebra |
Reduction Formula for Inverse Trigonometric Functions
[Click Here for Sample Questions]
- ∫ yn arcsin y dy = yn+1/ n+1 arcsin y -1/n+1 ∫ yn-1/\( \sqrt{} \) 1-y2dy
- ∫ yn arccos y dy = yn+1/ n+1 arc cos y -1/n+1 ∫ yn-1\( \sqrt{} \) 1-y2dy
- ∫ yn arctan y dy = yn+1/ n+1 arctan y -1/n+1 ∫ yn-1\( \sqrt{} \) 1-y2dy
Read More: Vectors
Reduction Formula For Trigonometric Functions
[Click Here for Previous Year Questions]
- ∫ Sinn(y) dy = -sinn-1 (y) cos (y)/n + n-1/n Sinn-2 (y) dy
- ∫ yn Sinn(y) dy = -yncos (y) + n ∫ yn-1 cos (y) dy
- ∫ yn Cos(y) dy = ynSin (y) - n ∫ yn-1 sin (y) dy
- ∫ tann (y) dy = - tann-1 (y)/n-1 – ∫ tann-2 (y) dy
- ∫ Sinn(y) dy Cosm(y) dy = sinn+1 (y) cosm-1(y)/n+m + m-1/n+m ∫ Sinn(y) Cosm-2(y)dy
- ∫ \(\frac{dx}{sin^n x} \) = \(\frac{cos x}{(n-1) sin^{n-1} x} + \frac{(n-2)}{(n-1)}\)∫ \(\frac{dx}{sin^{n-2} x'} \) n ≠ 1
- ∫ \(\frac{dx}{cos^n x} \) = \(\frac{sin x}{(n-1) cos^{n-1} x} + \frac{(n-2)}{(n-1)}\)∫ \(\frac{dx}{cos^{n-2} x'} \) n ≠ 1
Read More: Integration by Parts
Reduction Formula for Algebraic Functions
[Click Here for Sample Questions]
- ∫ yn / ayn + b dy = y/a-b/a ∫ dy/ayn + b
- ∫ dy (ay2 + by + C)n = - 2ay- b/ (n-1)(b2 – 4ac) (ay2 + by + C)n-1 -2(2n-3)a/(n-1)(b2 – 4ac) ∫ dy/(ay2 + by + C)n-1 , n ≠ 1
- ∫ dy/(y2- a2)n = x/2(n-1)a2(y2 – a2)n-1 – 2n-3/2(n-1)a2 ∫ dy(y2 – a2)n-1 , n ≠ 1
- ∫ dy/(y2 + a2)n = x/2(n-1)a2(y2 – a2)n-1 + 2n-3/2(n-1)a2 ∫ dy(y2 – a2)n-1 , n ≠ 1
Read More: Difference Between Variance and Standard Deviation
Reduction Formula For Trigonometric Functions
[Click Here for Previous Year Questions]
- ∫ Inn y dy = yn+1 Inm y/ n +1 xn - m/n+1 ∫ xnInm-1 y dy
- ∫ Inm y/yn = Inmy + (n-1)yn +1 + m/n-1 ∫ Inm-1y/yn dy
Read More: Continuous Integration
Reduction Formula for Logarithmic Functions
[Click Here for Sample Questions]
- ∫ xn Inm dx = \(\frac{x^{n+1}ln^mx}{n+1} - \frac{m}{n+1}\)∫ xn Inm – 1xdx
- ∫ \(\frac{ln^mx}{x^n} = - \frac{ln^mx}{(n-1)x^{n+1}} + \frac{m}{n-1} \) = ∫ \(\frac{ln^{m-1}x}{x^n}\), n ≠ 1
Read More: u substitution formula
Reduction Formula for Hyperbolic Trigonometric Functions
[Click Here for Previous Year Questions]
- ∫sinhnx dx = −(1/n) sinhn−1 x cosh x − (n−1/n) ∫sinhn−2x dx
- ∫coshnx dx = (1/n) sinh x coshn−1 x − (n−1/n) ∫coshn−2x dx
- ∫tanhnx dx = −(1/n−1) tanhn−1x + ∫tanhn−2x dx, n≠1
- ∫cothnx dx = −(1/n−1)cothn−1x + ∫cothn−2x dx, n≠1
- ∫ \(\frac{dx}{sinh^nx} = - \frac{cosh x}{(n-1) sinh^{n-1}x} + \frac{(n-2)}{(n-1)}\)∫ \(\frac{dx}{sinh^{n-2}x'}\), n≠1
- ∫ \(\frac{dx}{cosh^nx} = - \frac{sinh x}{(n-1) cosh^{n-1}x} + \frac{(n-2)}{(n-1)}\)∫ \(\frac{dx}{cosh^{n-2}x'}\), n≠1
- ∫sinhnxcoshmxdx = \(\frac{sinh^{n+1}xcosh^{m-1}x}{n+m} + \frac{(m-1)}{(n+m)}\)∫ sinhnxcoshm-2xdx
- ∫sechnxdx = \(\frac{sech^{n-2}xtanhx}{n-1} + \frac{n-2}{n-1}\)∫sechn-2xdx, n≠1
Read More:
Things to Remember
- Reduction formulas tend to calculate the solution of integral complex problems and help us to reduce the integral degree and evaluate the integrals in a limited number of steps.
- Integration is a method to calculate the antiderivative of a given function.
- The different types of categories of reduction formula include the reduction formula for trigonometric functions, inverse trigonometric functions, exponential functions, logarithmic functions, algebraic functions, and hyperbolic trigonometric functions.
- ∫ yn emy dy = 1/mynemy –n/m yn-1 emydy
- ∫sinhnx dx = −(1/n) sinhn−1 x cosh x − (n−1/n) ∫sinhn−2x dx
- ∫xn lnmx dx = \(\frac{x^{n+1}ln^{m}x}{n+1}\) - \(\frac{m}{n+1}\) ∫xnlnm−1xdx
- ∫ Sinn(y) dy = -sinn-1 (y) cos (y)/n + n-1/n Sinn-2 (y) dy
Read More: Three-Dimensional Geometry Introduction
Previous Year Questions
- The area enclosed between this curve and the coordinate axes… [JKCET – 2017]
- The area (in sq units) of the region described by… [JEE Main – 2014]
- The area (in s units) of the quadrilateral formed by the tangents… [JEE Main – 2015]
- The area (in s units) bounded by the curve y… [COMEDK UGET – 2013]
- If the line x = b bisects the area bounded by the curves, C1 and C2… [JEE Main – 2020]
- The greatest integer less than or equal to “t”… [JEE Main – 2019]
- [x] denotes the greatest integer less than 20Cr … [JEE Main – 2019]
- The value of the integral… [UPSEE – 2018]
- \(\int {x^3 - 1}\over {x^3 - x}\)dx… [COMEDK UGET – 2015]
- The only integral root of the equation … [AMUEEE – 2016]
Sample Questions
Ques 1. Calculate the integral of ∫tan5(2x) dx (5 Marks)
Ans. With the help of reduction formula:
∫tann(u) du = (1/ n−1) tann−1(u) − ∫tann−2(u) du
Substituting the values:
a = 2x
∴ ½ da = dx
Hence,
∫tan5 (2x) dx = ½ [∫tan5(a) da]
= ½ [¼ tan4(a) − ∫tan3(a) da]
= ½ [¼ tan4(a) – [½ tan2(a) – ∫tan(a) da]]
= 1/8 tan4(a) − ¼ tan2(a) + ½ ln sec(a) + C
= 1/8 tan4(2x) − ¼ tan2(2x) + ½ ln sec(2x) + C
Ques 2. Evaluate: x3Log2x. (3 Marks)
Ans: Applying the reduction formula we can conveniently find the integral of the given expression.
∫ xnlogmx.dx = \(\frac{x^{n+1}log^mx}{n+1} - \frac{m}{n+1}\)∫xnlogm-1x.dx
∫ x3log2x.dx = \(\frac{x^{4}log^2x}{4} - \frac{2}{4}\)∫x3logx.dx
= \(\frac{x^{4}log^2x}{4} - \frac{1}{2}\)(\(\frac{x^{4}logx}{4} - \frac{1}{4}\). ∫x3.dx)
= \(\frac{x^{4}log^2x}{4} - \frac{x^4logx}{8} + \frac{x^4}{32} = C\)
Ans. ∫ x3log2x.dx =\(\frac{x^{4}log^2x}{4} - \frac{x^4logx}{8} + \frac{x^4}{32} = C\)
Ques 3. Explain the different types of reduction formulas. (3 Marks)
Ans. An Integration is a method to calculate the antiderivative of a given function. Reduction formulas tend to calculate the solution of integral complex problems and help us to reduce the integral degree and evaluate the integrals in a limited number of steps. The different types of reduction formulas are:
- Reduction Formula for Exponential Functions
- Reduction Formula for Inverse Trigonometric Functions
- Reduction Formulas For Trigonometric Functions
- Reduction Formula for Algebraic Functions
- Reduction Formula For Trigonometric Functions
- Reduction Formula for Logarithmic Functions
- Reduction Formula for Hyperbolic Trigonometric Functions
Ques 4. Calculate y7(8 + 3y4)8 dy. (4 Marks)
Ans. u = 8 + 3y4 → du = 12y3dy → y3dy = 1/12 du
Rewriting these values:
Calculating the integral:
∫ y7 (8 + 3y4)8 dy =∫ y4y3 (8 + 3y4)8 dy = ∫ y4(8 + 3y4)y3dy
Now, transform the entire y’s in the integrand excluding for the first y4. Solving the same for y4 using substitution, we get
y4 = 1/3(u-8)
Now, substituting and evaluating the final result:
y7 (8 + 3y4) =1/12 1/3 (u-8)u8 du = 1/36 u9 – 8u8 du = 1/36 (1/10 u10 -8/9u9 + C
= 1/36(1/10 (8 + 3Y4)10 - 8/9 (8 + 3y4)9) + C
Ques 5. Evaluate In = ∫ sin y dy = 1/n cos y sinn-1 y + n-1/n In-2. (5 Marks)
Ans.Using the reduction formula with n= 4, we have,
∫ Sin4 y dy = -1/4 cos y sin3 y + ¾ I2
Calculating I2 = sin2 y dy with corresponds to n= 2
Using the integrals equations we get,
∫ Sin2 y dy = y/2-1/2 sin y cos y + K
No combining all together gives
∫ Sin4 y dy
= -¼ Cos y Sin3 y + ¾ y/2–1/siny cosy+K"
= -1/4 -¼ Cos y Sin3 y + 3/8y – cos y sin y + K’
= 3/8 y -1/4 sin (2y) + 1/32 sin 4(y) + K’
Both values of K’ and K are different.
Therefore, 3/8 y -1/4 sin (2y) + 1/32 sin 4(y) + K’ is the required answer.
Ques 6. Calculate the integral of Sin5x. (5 Marks)
Ans. Example, ∫sin5 xdx = ∫sin4 x – sinxdx
sin4 x + sinx
4sin3 xcos x – -cos x
- sin4 xcos x – -4 ∫sin3 xcos2 xdx
- sin4 xcos x + 4∫sin3x(1 – sin2x)dx
- sin4 xcos x + 4∫sin3xdx – 4∫sin3xdx
5∫sin5xdx = – sin4xcosx + 4∫sin3xdx
∫sin5xdx = – \(\frac{1}{5}\)sin4xcosx + \(\frac{4}{5}\)∫sin5xdx
This is the required answer.
Ques 7. Calculate the integral of Cos2(x)Sin(x)dx. (3 Marks)
Ans. ∫cos2(2x)sin(x)dx = ∫ \(\frac{1}{2}\)[1 + cos(4x)]sin (x)dx
= ∫\(\frac{1}{2}\)cos(4x) + \(\frac{1}{2}\)sin (x)cos(4x)dx
= \(\frac{1}{2}\) ∫cos(4x)dx + \(\frac{1}{4}\)∫sin (- 3x) + sin(5x)dx
= \(\frac{1}{8}\)sin(4x) – \(\frac{1}{4}\)∫ sin(3x)dx + \(\frac{1}{4}\) ∫sin(5x)dx
= \(\frac{1}{8}\)sin(4x) + \(\frac{1}{12}\)cos(3x) – \(\frac{1}{20}\)cos(5x) + C, x ∈ IR.
Ques 8. According to the Given Reduction Formula In = ∫ sin y dy = 1/n cos y sinn-1 y + n-1/n In-2. Find out: ∫ Sin4 y dy. (5 Marks)
Ans. According to the reduction formula of integrals with n= 4, the equation would be
∫ Sin4 y dy = -1/4 cos y sin3 y + ¾ I2
Now calculating I2 = sin2 y dy with corresponds to n= 2
On applying the integrals equations, we get the equation as:
∫ Sin2 y dy = y/2-1/2 sin y cos y + K
After combining all these, it gives the result:
∫ Sin4 y dy
= -¼ Cos y Sin3 y + ¾ y/2–1/sinycosy+Ky/2–1/sinycosy+K
= -1/4 -¼ Cos y Sin3 y + 3/8y – cos y sin y + K’
= 3/8 y -1/4 sin (2y) + 1/32 sin 4(y) + K’
This is the required answer.
Note: The values of both the constants K and K’ are different.
Ques 9. Evaluate the Integral y7(8 + 3y4)8 dy. (5 Marks)
Ans. u = 8 + 3y4 → du = 12y3dy → y3dy = 1/12 du
Rewriting the equation
Evaluating the integral
∫ y7 (8 + 3y4)8 dy =∫ y4y3 (8 + 3y4)8 dy = ∫ y4(8 + 3y4)y3dy
All the y’s in the integrand except the y4 in the front can be substituted.
Solving for y4, we will apply the substitution and calculate the result as:
y4 = 1/3(u-8)
Now, substituting the values and then calculating the result
y7 (8 + 3y4) =1/12 1/3 (u-8)u8 du = 1/36 u9 – 8u8 du = 1/36 (1/10 u10 -8/9u9 + C
= 1/36(1/10 (8 + 3Y4)10 - 8/9 (8 + 3y4)9) + C
This is the required answer.
Ques 10. What is the reduction formula? (2 Marks)
Ans. Higher-order integrals are frequently calculated in integration using a reduction formula. Higher degree expressions need a lot of time and effort to solve, hence in this case, the reduction formulas are provided as simple expressions with a degree n. A collection of four formulas representing the reduction formulas has been provided here.
For Latest Updates on Upcoming Board Exams, Click Here: https://t.me/class_10_12_board_updates
Check-Out:
Comments