NCERT Solutions for Class 12 Maths Chapter 3 Matrices Exercise 3.4

Jasmine Grover logo

Jasmine Grover

Content Strategy Manager

CBSE CLASS XII Related Questions

1.
For what values of x,\(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\)\(\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 & 1 \\1&0&2 \end{bmatrix}\)\(\begin{bmatrix} 0 \\2\\x\end{bmatrix}\)=O?

      2.
      Find the vector and the cartesian equations of the lines that pass through the origin and(5,-2,3).

          3.

          Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta  &-sin\alpha \\   -sin\beta&cos\beta  &0 \\   sin\alpha cos\beta&sin\alpha\sin\beta  &cos\alpha  \end{vmatrix}\)

              4.
              By using the properties of definite integrals, evaluate the integral: \(∫_0^π log(1+cosx)dx\)

                  5.
                  Find the inverse of each of the matrices,if it exists. \(\begin{bmatrix} 2 &  3\\ 5 & 7 \end{bmatrix}\)

                      6.

                      Let A=\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\),show that(aI+bA)n=anI+nan-1bA,where I is the identity matrix of order 2 and n∈N

                          CBSE CLASS XII Previous Year Papers

                          Comments



                          No Comments To Show