NCERT Solutions for Class 12 Maths Chapter 12 Exercise 12.2 Solutions

Collegedunia Team logo

Collegedunia Team

Content Curator

Class 12 Maths NCERT Solutions Chapter 12 Linear Programming Exercise 12.2 is provided in the article. Class 12 Chapter 12 Linear Programming Exercises include questions on Different Types of Linear Programming Problems:

  • Manufacturing problems
  • Diet problems
  • Transportation problems

Download PDF NCERT Solutions for Class 12 Maths Chapter 12 Linear Programming Exercise 12.2

Check out the solutions of Class 12 Maths NCERT solutions chapter 12 Linear Programming Exercise 12.2

Read More: NCERT Solutions For Class 12 Mathematics Chapter 12 Linear Programming

Also check other Exercise Solutions of Class 12 Maths Chapter 12 Linear Programming

Also Read:

Also Read:

CBSE CLASS XII Related Questions

1.
Find the inverse of each of the matrices,if it exists \(\begin{bmatrix} 2 & 1 \\ 7 & 4  \end{bmatrix}\)

      2.
      If (i) A=\(\begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{bmatrix}\),then verify that A'A=I
      (ii) A= \(\begin{bmatrix} \sin\alpha & \cos\alpha\\ -\cos \alpha & \sin\alpha \end{bmatrix}\),then verify that A'A=I

          3.
          For what values of x,\(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\)\(\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 & 1 \\1&0&2 \end{bmatrix}\)\(\begin{bmatrix} 0 \\2\\x\end{bmatrix}\)=O?

              4.

              Solve system of linear equations, using matrix method.
               x-y+2z=7
               3x+4y-5z=-5
               2x-y+3z=12

                  5.
                  By using the properties of definite integrals, evaluate the integral: \(∫_0^π log(1+cosx)dx\)

                      6.

                      Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta  &-sin\alpha \\   -sin\beta&cos\beta  &0 \\   sin\alpha cos\beta&sin\alpha\sin\beta  &cos\alpha  \end{vmatrix}\)

                          CBSE CLASS XII Previous Year Papers

                          Comments



                          No Comments To Show