Select Goal &
City
Select Goal
Search for Colleges, Exams, Courses and More..
Write a Review
Get Upto ₹500*
Explore
Explore More
Study Abroad
Get upto 50% discount on Visa Fees
Top Universities & Colleges
Abroad Exams
Top Courses
Exams
Read College Reviews
News
Admission Alerts 2024
Education Loan
Institute (Counselling, Coaching and More)
Ask a Question
College Predictor
Test Series
Practice Questions
Course Finder
Scholarship
All Courses
B.Tech
MBA
M.Tech
MBBS
B.Com
B.Sc
B.Sc (Nursing)
BA
BBA
BCA
Course Finder
No Data Found
>
EAMCET
>
Mathematics
List of top Mathematics Questions asked in EAMCET
If $\quad \tan \theta \cdot \tan \left(120^{\circ}-\theta\right) \tan \left(120^{\circ}+\theta\right)=\frac{1}{\sqrt{3}}$, then $\theta$ is equal to
EAMCET - 2015
EAMCET
Mathematics
Trigonometric Equations
If $f: R \rightarrow R, g: R \rightarrow R$ are defined by $f(x)=5\, x-3, g(x)=x^{2}+3$, then $g o f^{-1}(3)$ is equal to
EAMCET - 2015
EAMCET
Mathematics
Differentiability
The common roots of the equations $z^{3}+2 z^{2}+2 z+1=0, z^{2014}+z^{2015}+1=0$ are
EAMCET - 2015
EAMCET
Mathematics
Quadratic Equations
If
$\omega$
is a complex cube root of unity, then
$\omega^{\left(\frac{1}{3}+\frac{2}{9}+\frac{4}{27}+\ldots \infty\right)}+\omega^{\left(\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\ldots \infty\right) \text { is equal to }}$
EAMCET - 2015
EAMCET
Mathematics
Geometric Progression
The system $2\,x+3 y+z=5,3\,x+y+5\,z=7$ and $x+4\,y-2\,z=3$ has
EAMCET - 2015
EAMCET
Mathematics
Transpose of a Matrix
The value of the sum $1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+3 \cdot 4 \cdot 5+\ldots$ upto $n$ terms is equal to
EAMCET - 2015
EAMCET
Mathematics
Sum of First n Terms of an AP
$\displaystyle \sum_{k=1}^{6}\left[\sin \frac{2 k \pi}{7}-i \cos \frac{2 k \pi}{7}\right]$ is equal to
EAMCET - 2015
EAMCET
Mathematics
Trigonometric Equations
The value of the determinant $\begin{vmatrix}b^{2}-a b & b-c & b c-a c \\ a b-a^{2} & a-b & b^{2}-a b \\ b c-a c & c-a & a b-a^{2}\end{vmatrix}$ is
EAMCET - 2015
EAMCET
Mathematics
Applications of Determinants and Matrices
If $A$ is a square matrix of order 3 , then | adj $\left(\operatorname{adj} A^{2}\right) \mid$ is equal to
EAMCET - 2015
EAMCET
Mathematics
Invertible Matrices
If $A=\left\{x \in R / \frac{\pi}{4} \leq x \leq \frac{\pi}{3}\right\}$ and $f(x)=\sin x-x$, then $f(A)$ is equal to
EAMCET - 2015
EAMCET
Mathematics
Increasing and Decreasing Functions
If $a, b, c$ are distinct and the roots of $(b-c) x^{2}+(c-a) x+(a-b)=0 $ are equal, then $a, b$ and $c$ are in
EAMCET - 2015
EAMCET
Mathematics
nth Term of an AP
If $\alpha, \beta, \gamma$ are the roots of $x^{3}+4 x+1=0$, then the equation whose roots are $\frac{\alpha^{2}}{\beta+\gamma}, \frac{\beta^{2}}{\gamma+\alpha},\,\frac{\gamma^{2}}{\alpha+\beta}$ is
EAMCET - 2009
EAMCET
Mathematics
binomial expansion formula
For
$|x|<1$
, the constant term in the expansion of
$\frac{1}{(x-1)^{2}(x-2)}$
is
EAMCET - 2009
EAMCET
Mathematics
binomial expansion formula
The number of subsets of $\{1, 2, 3 ,............,9\}$ containing at least one odd number is
EAMCET - 2009
EAMCET
Mathematics
types of sets
Match the following.
EAMCET - 2009
EAMCET
Mathematics
Inverse Trigonometric Functions
Let
$f(x)=x^{2}+a x +b,$
where
$a, b \in R .$
If
$f(x)=0$
has all its roots imaginary, then the roots of
$f(x)+f'(x)+f''(x)=0$
are
EAMCET - 2009
EAMCET
Mathematics
binomial expansion formula
A binary sequence is an array of $0's$ and $1's$. The number of $n$ -digit binary sequences which contain even number of $0's$ is
EAMCET - 2009
EAMCET
Mathematics
Binary operations
$p$ points are chosen on each of the three coplanar lines. The maximum number of triangles formed with vertices at these points is
EAMCET - 2009
EAMCET
Mathematics
Coplanarity of Two Lines
The number of subsets of $\{1,2,3, \ldots, 9\}$ containing at least one odd number is
EAMCET - 2009
EAMCET
Mathematics
types of sets
If $x$ is numerically so small so that $x^{2}$ and higher powers of $x$ can be neglected, then $\left(1+\frac{2 x}{3}\right)^{3 / 2} \cdot(32+5 x)^{-1 / 5}$ is approximately equal to
EAMCET - 2009
EAMCET
Mathematics
binomial expansion formula
The coefficient of $x^{24}$ in the expansion of $\left(1+x^{2}\right)^{12}\left(1+x^{12}\right)\left(1+x^{24}\right)$ is
EAMCET - 2009
EAMCET
Mathematics
binomial expansion formula
$\frac{1}{e^{3 x}}\left(e^{x}+e^{5 x}\right)=a_{0}+a_{1} x +a_{2} x^{2}+\ldots$ $\Rightarrow 2 a_{1}+2^{3} a_{3}+2^{5} a_{5}+\ldots$ is equal to
EAMCET - 2009
EAMCET
Mathematics
binomial expansion formula
The roots of $(x-a)(x-a-1)+(x-a-1)(x-a-2) +(x-a)(x-a-2)=0, a \in R$ are always
EAMCET - 2009
EAMCET
Mathematics
binomial expansion formula