Select Goal &
City
Select Goal
Search for Colleges, Exams, Courses and More..
Write a Review
Get Upto ₹500*
Explore
Explore More
Study Abroad
Get upto 50% discount on Visa Fees
Top Universities & Colleges
Abroad Exams
Top Courses
Exams
Read College Reviews
News
Admission Alerts 2024
Education Loan
Institute (Counselling, Coaching and More)
Ask a Question
College Predictor
Test Series
Practice Questions
Course Finder
Scholarship
All Courses
B.Tech
MBA
M.Tech
MBBS
B.Com
B.Sc
B.Sc (Nursing)
BA
BBA
BCA
Course Finder
No Data Found
>
Mathematics
List of top Mathematics Questions on Transpose of a Matrix
Let P be a square matrix such that P
2
= I – P. For α, β, γ, δ ∈ N, if P
α
+ P
β
= γI – 29P and P
α
– P
β
= δI – 13P, then α + β + γ – δ is equal to
JEE Main - 2023
JEE Main
Mathematics
Transpose of a Matrix
Let B =
\(\begin{bmatrix} 1 & 3 & α \\ 1 & 2& 3 \\ α & α & 4 \end{bmatrix}\)
, α>2 be the adjoint of a matrix A and |A| = 2, then [α - 2α α] B
\(\begin{bmatrix} α \\ -2α \\ α \end{bmatrix}\)
is equal to
JEE Main - 2023
JEE Main
Mathematics
Transpose of a Matrix
Given below are two statements: one is labelled as
Assertion A
and the other is labelled as
Reason R
.
Assertion A
: For matrix A =
\(\begin{bmatrix} 1 & 2 \\ 8 & 16 \end{bmatrix}\)
,rank of A = r(A) = 1
Reason R
: For matrix A if |A| = 0, then it implies that rank of matrix A given by r(A) is less than full rank.
In the light of the above statements, choose the
most appropriate
answer from the options given below:
CUET (PG) - 2023
CUET (PG)
Mathematics
Transpose of a Matrix
if A=
\(\frac{1}{5! 6! 7!}\begin{bmatrix} 5! & 6! & 7!\\ 6! & 7! & 8! \\ 7! & 8! & 9! \end{bmatrix}\)
, then |adj(adj(2A))| is equal t
JEE Main - 2023
JEE Main
Mathematics
Transpose of a Matrix
Let D
k
=
\(\begin{vmatrix} 1 & 2k & 2k-1\\ n & n^2+n+2 & n^2 \\ n & n^2+n & n^2+n+2 \end{vmatrix} \)
If
\(∑^n_{k=1} D_k=96,\)
The n is equal to
JEE Main - 2023
JEE Main
Mathematics
Transpose of a Matrix
Let A=
\(\begin{bmatrix} 1 & \frac{1}{51} \\ 0 & 1\end{bmatrix}\)
. If B=
\(\begin{bmatrix} 1 & 2 \\ -1 & -1\end{bmatrix}\)
A
\(\begin{bmatrix} -1 & -2 \\ 1 & 1\end{bmatrix}\)
, then the sum of all the elements of the matrix
\(\sum^{50}_{n=1}B^n\)
is equal to
JEE Main - 2023
JEE Main
Mathematics
Transpose of a Matrix
let
\(A=\begin{bmatrix} 1 & \frac{1}{51} \\ 0& 1 \end{bmatrix}\)
if
\(B=\begin{bmatrix} 1 &2\\ -1& -1 \end{bmatrix} A=\begin{bmatrix} -1 &2\\ 1& 1 \end{bmatrix}\)
then the sum of all the elements of the matrix
\(∑ ^{50}_{n=1}\)
B
n
is Equal to
JEE Main - 2023
JEE Main
Mathematics
Transpose of a Matrix
Find the scalars λ
1
and λ
2
that are attached to
\(v=\begin{bmatrix} 1\\ 2 \\ \end{bmatrix} \)
and
\(w=\begin{bmatrix} 3\\ 1 \\ \end{bmatrix} \)
to yield
\(\begin{bmatrix} 1\\ 0 \\ \end{bmatrix} \)
CUET (PG) - 2023
CUET (PG)
Mathematics
Transpose of a Matrix
Let A =
\(\begin{pmatrix} p & -q \\ q & p \end{pmatrix}\)
be a 2 × 2 matrix.
A. The rank of matrix A given by r(A) is 3
B. Matrix A is orthogonal if and only if p
2
+ q
2
=1
C. Transpose of matrix A is given by A
T
\(=\begin{pmatrix} p & q \\ -q & p \end{pmatrix}\)
D. Determinant of matrix A is | A |= p
Choose the most appropriate answer from the options given below:
CUET (PG) - 2023
CUET (PG)
Mathematics
Transpose of a Matrix
Let A be a
\(3×3\)
real matrix such that
\(A\begin{pmatrix} 1 \\1 \\ 0 \end{pmatrix}\)
=
\(\begin{pmatrix} 1 \\1 \\ 0 \end{pmatrix}\)
;
\(A\begin{pmatrix} 1 \\0 \\ 1 \end{pmatrix}\)
=
\(A\begin{pmatrix} -1 \\0 \\ 1 \end{pmatrix}\)
and
\(A\begin{pmatrix} 0 \\0 \\ 1 \end{pmatrix}\)
=
\(\begin{pmatrix} 1 \\1 \\ 2 \end{pmatrix}\)
If
\(X = [x_1, x_2, x_3]^T \)
and
\(I\)
is an identity matrix of order
\(3\)
, then the system
\([A−2I]X \)
=
\(\begin{pmatrix} 4 \\1 \\ 1 \end{pmatrix}\)
has:
JEE Main - 2022
JEE Main
Mathematics
Transpose of a Matrix
Let
A
= [
a
ij
] be a square matrix of order 3 such that
a
ij
= 2
j
–
i
, for all
i
,
j
= 1, 2, 3. Then, the matrix
A
2
+
A
3
+ … +
A
10
is equal to
JEE Main - 2022
JEE Main
Mathematics
Transpose of a Matrix
If $\begin{vmatrix}a+b+2c&a&b\\ c&2a+b+c&b\\ c&a&a+2b+c\end{vmatrix} = 2 $, then $a^3 + b^3 + c^3 - 3abc$ =
AP EAMCET - 2019
AP EAMCET
Mathematics
Transpose of a Matrix
If $k$ is one of the roots of the equation $x^2 - 25x + 24 = 0 $ such that $A = \begin{bmatrix}1&2&1\\ 3&2&3\\ 1&1&k\end{bmatrix} $ is a non-singular matrix, then $A^{-1}$ =
AP EAMCET - 2019
AP EAMCET
Mathematics
Transpose of a Matrix
Let x be an
$n \times 1$
matrix. Let O and I be the zero, and identity matrices of order n, respectively. Define
$P = - \frac{xx^T}{x^Tx}$
is the transpose of x. Then which of the following options is always CORRECT?
UPSEE - 2019
UPSEE
Mathematics
Transpose of a Matrix
If $A = \frac{1}{3} \begin{bmatrix}1&2&2\\ 2&1&-2\\ a&2&b\end{bmatrix} $ is an orthogonal matrix, then
BITSAT - 2018
BITSAT
Mathematics
Transpose of a Matrix
The system $2\,x+3 y+z=5,3\,x+y+5\,z=7$ and $x+4\,y-2\,z=3$ has
EAMCET - 2015
EAMCET
Mathematics
Transpose of a Matrix
If $\begin{bmatrix}\alpha&\beta\\ \gamma&-\alpha\end{bmatrix}$ is square root of identity matrix of order $2$ then
BITSAT - 2014
BITSAT
Mathematics
Transpose of a Matrix
If
\(\begin{vmatrix}1&-1&x\\1&x&1\\x&-1&1\end{vmatrix}\)
has no inverse, then the real value of
\(x\)
is
BITSAT - 2009
BITSAT
Mathematics
Transpose of a Matrix
If one of the roots of $\begin{vmatrix} 3 &5 & x \\ 7 & x & 7 \\ x & 5 & 3 \end{vmatrix} = 0 $ is -10,then the other roots are
BITSAT - 2009
BITSAT
Mathematics
Transpose of a Matrix
If x = -9 is a root of A = $\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \\ \end{vmatrix}$ = 0, then other two root are
VITEEE - 2006
VITEEE
Mathematics
Transpose of a Matrix
The identity element in the group $M = \left\{ \begin{bmatrix} x & x \\ x & x\\ \end{bmatrix} | x \ \in \ R, x \neq 0 \right\}$ with respect to matrix multiplication is
KCET - 2005
KCET
Mathematics
Transpose of a Matrix
Let
A
=
(
0
2
q
r
p
q
−
r
p
−
q
r
)
. If
A
A
T
=
I
3
, then
|
p
|
is:
JEE Main
Mathematics
Transpose of a Matrix
If
$\begin{bmatrix}1&x&1\end{bmatrix} \begin{bmatrix}1&3&2\\ 2&5&1\\ 15&3&2\end{bmatrix}\begin{bmatrix}1\\ 2\\ x\end{bmatrix} = 0 $
, then x can be
KEAM
Mathematics
Transpose of a Matrix
If
$A=\begin{bmatrix}1 & 0 \\ 0 & -1\end{bmatrix}, P=\begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix}$
and
$X=A P A^{T}$
, then
$A^{T} X^{50} A=$
AP EAPCET
Mathematics
Transpose of a Matrix
If f(x)= $\begin{vmatrix} x-3 & 2x^2-18 & 2x^3-81\\ x-5 & 2x^2-50 & 4x^3-500\\ 1 & 2 & 3 \\ \end{vmatrix}$ then f(1). f(3) + f(3). f(5) + f(5). f(1) is
KCET
Mathematics
Transpose of a Matrix