The correct option is(D): 0.
Given, $\frac{1}{e^{3 x}}\left(e^{x}+e^{5 x}\right)=a_{0}+a_{1} x+ a_{2} x^{2}+\ldots$
$\Rightarrow \left(e^{-2 x}+e^{2 x}\right)=a_{0}+a_{1} x+ a_{2} x^{2}+\ldots$
$\Rightarrow 2\left[1+\frac{(2 x)^{2}}{2 !}+\frac{(2 x)^{4}}{4 !}+\ldots\right]$
$=a_{0}+a_{1} x+ a_{2} x^{2}+\ldots$
$\Rightarrow a_{1}=a_{3}=a_{5}=\ldots=0$
$\therefore 2 a_{1}+2^{3} a_{3}+2^{5} a_{5}+\ldots=0$
The coefficient of x7 in (1 – 2x + x3)10 is?
The binomial expansion formula involves binomial coefficients which are of the form
(n/k)(or) nCk and it is calculated using the formula, nCk =n! / [(n - k)! k!]. The binomial expansion formula is also known as the binomial theorem. Here are the binomial expansion formulas.
This binomial expansion formula gives the expansion of (x + y)n where 'n' is a natural number. The expansion of (x + y)n has (n + 1) terms. This formula says:
We have (x + y)n = nC0 xn + nC1 xn-1 . y + nC2 xn-2 . y2 + … + nCn yn
General Term = Tr+1 = nCr xn-r . yr