Question:

$\frac{1}{e^{3 x}}\left(e^{x}+e^{5 x}\right)=a_{0}+a_{1} x +a_{2} x^{2}+\ldots$ $\Rightarrow 2 a_{1}+2^{3} a_{3}+2^{5} a_{5}+\ldots$ is equal to

Updated On: May 21, 2024
  • $e$
  • $e^{-1}$
  • 1
  • 0
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The correct option is(D): 0.

Given, $\frac{1}{e^{3 x}}\left(e^{x}+e^{5 x}\right)=a_{0}+a_{1} x+ a_{2} x^{2}+\ldots$ 
$\Rightarrow \left(e^{-2 x}+e^{2 x}\right)=a_{0}+a_{1} x+ a_{2} x^{2}+\ldots$ 
$\Rightarrow 2\left[1+\frac{(2 x)^{2}}{2 !}+\frac{(2 x)^{4}}{4 !}+\ldots\right]$ 
$=a_{0}+a_{1} x+ a_{2} x^{2}+\ldots$ 
$\Rightarrow a_{1}=a_{3}=a_{5}=\ldots=0$ 
$\therefore 2 a_{1}+2^{3} a_{3}+2^{5} a_{5}+\ldots=0$

Was this answer helpful?
0
0

Concepts Used:

Binomial Expansion Formula

The binomial expansion formula involves binomial coefficients which are of the form 

(n/k)(or) nCk and it is calculated using the formula, nCk =n! / [(n - k)! k!]. The binomial expansion formula is also known as the binomial theorem. Here are the binomial expansion formulas.

This binomial expansion formula gives the expansion of (x + y)n where 'n' is a natural number. The expansion of (x + y)n has (n + 1) terms. This formula says:

We have (x + y)n = nC0 xn + nC1 xn-1 . y + nC2 xn-2 . y2 + … + nCn yn

General Term = Tr+1 = nCr xn-r . yr

  • General Term in (1 + x)n is nCr xr
  • In the binomial expansion of (x + y)n , the rth term from end is (n – r + 2)th .