Question:

If $A=\left\{x \in R / \frac{\pi}{4} \leq x \leq \frac{\pi}{3}\right\}$ and $f(x)=\sin x-x$, then $f(A)$ is equal to

Updated On: Aug 15, 2024
  • $\left[\frac{\sqrt{3}}{2}-\frac{\pi}{3}, \frac{1}{\sqrt{2}}-\frac{\pi}{4}\right]$
  • $\left[\frac{-1}{\sqrt{2}}-\frac{\pi}{4}, \frac{\sqrt{3}}{2}-\frac{\pi}{3}\right]$
  • $\left[-\frac{\pi}{3},-\frac{\pi}{4}\right]$
  • $\left[\frac{\pi}{4}, \frac{\pi}{3}\right]$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given, $f(x)=\sin x-x$
which is decreasing function in the interva $\left[\frac{\pi}{4}, \frac{\pi}{3}\right]$.
$\therefore \frac{\pi}{4} \leq x \leq \frac{\pi}{3}$
$\Rightarrow f\left(\frac{\pi}{4}\right) \geq f(x) \geq f\left(\frac{\pi}{3}\right)$
$\Rightarrow \sin \frac{\pi}{4}-\frac{\pi}{4} \geq f(x) \geq \sin \frac{\pi}{3}-\frac{\pi}{3}$
$\Rightarrow \frac{1}{\sqrt{2}}-\frac{\pi}{4} \geq f(x) \geq \frac{\sqrt{3}}{2}-\frac{\pi}{3}$
$\Rightarrow f(A) \in\left[\frac{\sqrt{3}}{2}-\frac{\pi}{3}, \frac{1}{\sqrt{2}}-\frac{\pi}{4}\right]$
Was this answer helpful?
0
0

Concepts Used:

Increasing and Decreasing Functions

Increasing Function:

On an interval I, a function f(x) is said to be increasing, if for any two numbers x and y in I such that x < y, 

⇒ f(x) ≤ f(y)

Decreasing Function:

On an interval I, a function f(x) is said to be decreasing, if for any two numbers x and y in I such that x < y,

⇒ f(x) ≥ f(y)

Strictly Increasing Function:

On an interval I, a function f(x) is said to be strictly increasing, if for any two numbers x and y in I such that x < y,

⇒ f(x) < f(y)

Strictly Decreasing Function:

On an interval I, a function f(x) is said to be strictly decreasing, if for any two numbers x and y in I such that x < y,

⇒ f(x) > f(y)

Graphical Representation of Increasing and Decreasing Functions