If PQR is a triangle of area $\triangle$ with a = 2, b = $ \frac{7}{2}$ and
c = $ \frac{5}{2}$, where a, b and c are the lengths of the sides of
'
the triangle opposite to the angles a t P ,Q and R,
respectively. Then, $ \frac{ 2 \, sin \, P - sin \, 2 P }{ 2 \, sin \, P + sin \, 2P }$ equals