• Substitute $x = 1$:
$\therefore a = 1$
• Consider:
$b = \lim_{x \to 0} \left( \frac{x \int_0^x \frac{\log(1+t)}{1+t^2} dt}{x^2} \right)$
• Using L'Hôpital's Rule:
$b = \lim_{x \to 0} \left( \frac{\frac{d}{dx} \left( \int_0^x \frac{\log(1+t)}{1+t^2} dt \right)}{\frac{d}{dx}(x^2)} \right) = \lim_{x \to 0} \left( \frac{\log(1+x)}{2x} \right) = \lim_{x \to 0} \frac{1}{2(1+x)} = \frac{1}{2}$
• Now, for the equations $cx^2 + dx + e = 0$ and $2bx^2 + ax + 4 = 0$ to have a common root:
$cx^2 + dx + e = 0$, $2bx^2 + ax + 4 = 0$
Since $D < 0$ (where $D$ denotes the discriminant of the equation), we find:
$c : d : e = 1 : 1 : 4$