Given \( A = \{1, 2, 3, 4\} \) and \( R = \{(1, 2), (2, 3), (1, 4)\} \), for \( R \) to be an equivalence relation, it must satisfy the following properties: reflexive, symmetric, and transitive.
Reflexivity: Add all pairs of the form \((a, a)\), where \( a \in A \):
\(\{(1, 1), (2, 2), (3, 3), (4, 4)\}\)
Symmetry: Add pairs such that if \((a, b) \in R\), then \((b, a)\) must also belong to \( R \):
\(\{(2, 1), (3, 2), (4, 1)\}\)
Transitivity: Ensure that if \((a, b) \in R\) and \((b, c) \in R\), then \((a, c) \in R\). For example:
\((1, 2), (2, 3) \implies (1, 3)\)
Applying this to all pairs results in:
\(\{(1, 3), (3, 1), (2, 4), (4, 2), (4, 3), (3, 4)\}\)
Combining all the above, the final relation \( R \) becomes:
\(R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (2, 3), (3, 2), (1, 4), (4, 1), (1, 3), (3, 1), (2, 4), (4, 2), (4, 3), (3, 4)\}\)
Thus, the total number of elements in \( R \) is 16.
\(\boxed{\text{Answer: } 16.}\)
Let \( \vec{a} = 3\hat{i} + \hat{j} - 2\hat{k} \), \( \vec{b} = 4\hat{i} + \hat{j} + 7\hat{k} \), and \( \vec{c} = \hat{i} - 3\hat{j} + 4\hat{k} \) be three vectors.
If a vector \( \vec{p} \) satisfies \( \vec{p} \times \vec{b} = \vec{c} \times \vec{b} \) and \( \vec{p} \cdot \vec{a} = 0 \), then \( \vec{p} \cdot (\hat{i} - \hat{j} - \hat{k}) \) is equal to