\[ \text{foci} \equiv (\pm 5, 0); \quad \frac{2b^2}{a} = \sqrt{50} \]
\(ae = 5 \quad \text{and} \quad b^2 \)
\(= \frac{5\sqrt{2}a}{2} b^2 = a^2(1 - e^2) \)
\(= \frac{5\sqrt{2}a}{2} \)
\(\implies a(1 - e^2) \)
\(= \frac{5\sqrt{2}}{2} \)
\( \implies \frac{5}{e(1 - e^2)} \)
\(= \frac{5\sqrt{2}}{2} \)
\( \implies \sqrt{2} - \sqrt{2}e^2 = e \)
\(\implies \sqrt{2}e^2 + e - \sqrt{2} = 0\)
\(\implies \sqrt{2}(e + \sqrt{2}) - 1(1 + \sqrt{2}) = 0\)
\(\implies (e + \sqrt{2})(\sqrt{2}e - 1) = 0\)
\(\therefore e = \sqrt{2}, \quad e = \frac{1}{\sqrt{2}}\)
For the hyperbola: \[ \frac{x^2}{b^2} - \frac{y^2}{a^2b^2} = 1 \] \[ a = 5\sqrt{2}, \quad b = 5 \] \[ a^2b^2 = b^2(e_1^2 - 1) \implies e_1^2 = 51 \]
Let \( \vec{a} = 3\hat{i} + \hat{j} - 2\hat{k} \), \( \vec{b} = 4\hat{i} + \hat{j} + 7\hat{k} \), and \( \vec{c} = \hat{i} - 3\hat{j} + 4\hat{k} \) be three vectors.
If a vector \( \vec{p} \) satisfies \( \vec{p} \times \vec{b} = \vec{c} \times \vec{b} \) and \( \vec{p} \cdot \vec{a} = 0 \), then \( \vec{p} \cdot (\hat{i} - \hat{j} - \hat{k}) \) is equal to