Rewriting the given expression:
\[ (1 + x)(1 - x^2) \left( 1 + \frac{3}{x} + \frac{3}{x^2} + \frac{1}{x^3} \right)^5, \quad x \neq 0, \]
Expanding:
\[ (1 + x)^2(1 - x)^{17} \]
To find the coefficient of \( x^2 \) in the expansion:
Coeff of \( x^2 \) = combination and calculation shown = \( 17 \)
Similarly, for \( x^{-13} \):
\( (1 + x)(1 - x^2) \left( 1 + \frac{3}{x} + \frac{3}{x^2} + \frac{1}{x^3} \right)^5\)
\(= (1 + x)(1 - x^2) \left( \frac{(1 + x)^3}{x^3} \right)^5 \)
\(= (1 + x)^2(1 - x^2) \frac{(1 + x)^{15}}{x^{15}}\)
\(= \frac{(1 + x)^{17} - x(1 + x)^{17}}{x^{15}}\)
\(= \text{coeff}\left( x^3 \right) \text{ in the expansion of } (1 + x)^{17} - x(1 + x)^{17} = 0 - 1 = -1\)
Coeff \( x^{-13} \) = Coeff \( x^2 \) in \( (1 + x)^{17} - x(1 + x)^{17} \)
\(= \binom{17}{2} - \binom{17}{1}= 17 \times 8 - 17 = 119\)
Hence Answer:
\[ 119 - 1 = 118. \]
Let \( \vec{a} = 3\hat{i} + \hat{j} - 2\hat{k} \), \( \vec{b} = 4\hat{i} + \hat{j} + 7\hat{k} \), and \( \vec{c} = \hat{i} - 3\hat{j} + 4\hat{k} \) be three vectors.
If a vector \( \vec{p} \) satisfies \( \vec{p} \times \vec{b} = \vec{c} \times \vec{b} \) and \( \vec{p} \cdot \vec{a} = 0 \), then \( \vec{p} \cdot (\hat{i} - \hat{j} - \hat{k}) \) is equal to