The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
In the expansion of \[ \left( \sqrt[3]{2} + \frac{1}{\sqrt[3]{3}} \right)^n , \, n \in \mathbb{N}, \] if the ratio of the 15th term from the beginning to the 15th term from the end is \[ \frac{1}{6}, \] then the value of \[ {}^nC_3 \] is:
If $ 2^m 3^n 5^k, \text{ where } m, n, k \in \mathbb{N}, \text{ then } m + n + k \text{ is equal to:} $
If \(\frac{{^{11}C_1}}{2} + \frac{{^{11}C_2}}{3} + \ldots + \frac{{^{11}C_9}}{10} = \frac{n}{m}\) with \(\gcd(n, m) = 1\), then \(n + m\) is equal to:
Let \( 0 \le r \le n \). If \( ^{n+1}C_{r+1} : ^nC_r : ^{n-1}C_{r-1} = 55 : 35 : 21 \), then \( 2n + 5r \) is equal to: