Let \( a_1, a_2, a_3, \dots \) be in an arithmetic progression of positive terms.
Let \( A_k = a_1^2 - a_2^2 + a_3^2 - a_4^2 + \dots + a_{2k-1}^2 - a_{2k}^2 \).
If \( A_3 = -153 \), \( A_5 = -435 \), and \( a_1^2 + a_2^2 + a_3^2 = 66 \), then \( a_{17} - A_7 \) is equal to _________.