The problem asks to evaluate the summation \( \sum_{r=1}^{9} \left( \frac{r+3}{2^r} \right) \cdot {^9C_r} \) and equate it to the form \( \alpha \left( \frac{3}{2} \right)^9 - \beta \) to find the value of \( (\alpha + \beta)^2 \), where \( \alpha \) and \( \beta \) are natural numbers.
This problem utilizes properties of binomial coefficients and the binomial theorem. The key formulas are:
1. Binomial Theorem: The expansion of \( (1+x)^n \) is given by:
\[ (1+x)^n = \sum_{r=0}^{n} {^nC_r} x^r = {^nC_0} + {^nC_1}x + {^nC_2}x^2 + \ldots + {^nC_n}x^n \]2. Binomial Coefficient Identity: A useful property for summations involving \( r \cdot {^nC_r} \) is:
\[ r \cdot {^nC_r} = n \cdot {^{n-1}C_{r-1}} \]Step 1: Let \( S \) be the given summation. We can split the term \( \frac{r+3}{2^r} \) into two parts and separate the summation accordingly.
\[ S = \sum_{r=1}^{9} \left( \frac{r}{2^r} + \frac{3}{2^r} \right) {^9C_r} \] \[ S = \sum_{r=1}^{9} \frac{r}{2^r} {^9C_r} + \sum_{r=1}^{9} \frac{3}{2^r} {^9C_r} \]Let's denote these two summations as \( S_1 \) and \( S_2 \).
\[ S_1 = \sum_{r=1}^{9} r \frac{{^9C_r}}{2^r}, \quad S_2 = \sum_{r=1}^{9} 3 \frac{{^9C_r}}{2^r} \]Step 2: Evaluate the first summation, \( S_1 \). We use the identity \( r \cdot {^9C_r} = 9 \cdot {^8C_{r-1}} \).
\[ S_1 = \sum_{r=1}^{9} \frac{9 \cdot {^8C_{r-1}}}{2^r} \]Let's factor out the constant 9 and adjust the power of 2:
\[ S_1 = 9 \sum_{r=1}^{9} \frac{{^8C_{r-1}}}{2 \cdot 2^{r-1}} = \frac{9}{2} \sum_{r=1}^{9} {^8C_{r-1}} \left(\frac{1}{2}\right)^{r-1} \]Now, let \( k = r-1 \). As \( r \) goes from 1 to 9, \( k \) goes from 0 to 8.
\[ S_1 = \frac{9}{2} \sum_{k=0}^{8} {^8C_k} \left(\frac{1}{2}\right)^k \]The summation is the binomial expansion of \( \left(1 + \frac{1}{2}\right)^8 \).
\[ S_1 = \frac{9}{2} \left(1 + \frac{1}{2}\right)^8 = \frac{9}{2} \left(\frac{3}{2}\right)^8 = \frac{3^2}{2} \cdot \frac{3^8}{2^8} = \frac{3^{10}}{2^9} \]We can rewrite this as:
\[ S_1 = 3 \cdot \frac{3^9}{2^9} = 3 \left(\frac{3}{2}\right)^9 \]Step 3: Evaluate the second summation, \( S_2 \).
\[ S_2 = 3 \sum_{r=1}^{9} {^9C_r} \left(\frac{1}{2}\right)^r \]The summation resembles the binomial expansion of \( \left(1 + \frac{1}{2}\right)^9 \), but it starts from \( r=1 \) instead of \( r=0 \).
We know that \( \sum_{r=0}^{9} {^9C_r} \left(\frac{1}{2}\right)^r = \left(1 + \frac{1}{2}\right)^9 = \left(\frac{3}{2}\right)^9 \).
So, we can write:
\[ \sum_{r=1}^{9} {^9C_r} \left(\frac{1}{2}\right)^r = \left( \sum_{r=0}^{9} {^9C_r} \left(\frac{1}{2}\right)^r \right) - {^9C_0} \left(\frac{1}{2}\right)^0 = \left(\frac{3}{2}\right)^9 - 1 \]Substituting this back into the expression for \( S_2 \):
\[ S_2 = 3 \left[ \left(\frac{3}{2}\right)^9 - 1 \right] = 3 \left(\frac{3}{2}\right)^9 - 3 \]Step 4: Combine \( S_1 \) and \( S_2 \) to find the total sum \( S \).
\[ S = S_1 + S_2 = 3 \left(\frac{3}{2}\right)^9 + \left( 3 \left(\frac{3}{2}\right)^9 - 3 \right) \] \[ S = 6 \left(\frac{3}{2}\right)^9 - 3 \]We are given that the sum is equal to \( \alpha \left( \frac{3}{2} \right)^9 - \beta \).
Comparing our result with the given form:
\[ 6 \left(\frac{3}{2}\right)^9 - 3 = \alpha \left( \frac{3}{2} \right)^9 - \beta \]We can see that \( \alpha = 6 \) and \( \beta = 3 \). Both are natural numbers, as required.
Now we need to find the value of \( (\alpha + \beta)^2 \).
\[ \alpha + \beta = 6 + 3 = 9 \] \[ (\alpha + \beta)^2 = 9^2 = 81 \]The value of \( (\alpha + \beta)^2 \) is 81.
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
In the expansion of \[ \left( \sqrt[3]{2} + \frac{1}{\sqrt[3]{3}} \right)^n , \, n \in \mathbb{N}, \] if the ratio of the 15th term from the beginning to the 15th term from the end is \[ \frac{1}{6}, \] then the value of \[ {}^nC_3 \] is:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
