Let \( \alpha, \beta, \gamma, \delta \in \mathbb{Z} \) and let \( A (\alpha, \beta) \), \( B (1, 0) \), \( C (\gamma, \delta) \), and \( D (1, 2) \) be the vertices of a parallelogram \( ABCD \). If \( AB = \sqrt{10} \) and the points \( A \) and \( C \) lie on the line \( 3y = 2x + 1 \), then \( 2 (\alpha + \beta + \gamma + \delta) \) is equal to