Consider rectangle \(ABCD\) inscribed within rectangle \(PQRS\) as shown in the figure. Let \(\theta\) be the angle formed between side \(AB\) of \(ABCD\) and side \(PQ\) of \(PQRS\).
Using trigonometry, the dimensions of \(PQRS\) are expressed as:
\[ a = 4 \cos \theta + 2 \sin \theta \] \[ b = 2 \cos \theta + 4 \sin \theta \]
The area of \(PQRS\) is given by:
\[ \text{Area} = (4 \cos \theta + 2 \sin \theta)(2 \cos \theta + 4 \sin \theta) \]
Expanding this, we get:
\[ = 8 \cos^2 \theta + 16 \sin \theta \cos \theta + 4 \sin^2 \theta + 8 \sin^2 \theta \] \[ = 8 + 10 \sin 2\theta \]
The area is maximized when \(\sin 2\theta = 1\), i.e., \(\theta = 45^\circ\).
Thus, the maximum area is:
\[ 8 + 10 = 18 \]
Now, we calculate \((a + b)^2\):
\[ (a + b)^2 = (4 \cos \theta + 2 \sin \theta + 2 \cos \theta + 4 \sin \theta)^2 \] \[ = (6 \cos \theta + 6 \sin \theta)^2 \] \[ = 36(\sin \theta + \cos \theta)^2 \]
Since \(\sin \theta + \cos \theta = \sqrt{2}\) at \(\theta = 45^\circ\),\[ = 36(\sqrt{2})^2 = 36 \times 2 = 72 \]