Given polar equation of circle is $r^{2}-8(\sqrt{3} \cos \theta+\sin \theta)+15=0$ or $r^{2}-8(\sqrt{3} r \cos \theta +r \sin \theta)+15=0$ where $r \cos \theta=x$ and $y=r \sin \theta$ It can be rewritten in cartesian form $x^{2}+y^{2}-8 \sqrt{3} x+y+15=0$ $\Rightarrow x ^{2}+ y ^{2}-8 \sqrt{3} x -8 y +15=0$ Now, radius $=\sqrt{4 \sqrt{3}^{2}+4^{2}-15}$ $=\sqrt{48+16-15}=7$