Let $\left( x _{0}, y _{0}\right)$ be the center of the circle Intersection of any $2$ diameter gives us the center. $x =\frac{5+3 y }{2}$ substituting this in $3 x-4 y=7$ $3 \frac{5+3 y}{2}-4 y=7$ $\Rightarrow y+1=0$ $\Rightarrow y=-1$ $x_{0}=\frac{5+3(-1)}{2}=1$ Equation of circle will be $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$ $(x-1)^{2}+(y+1)^{2}=7^{2}$ $\Rightarrow x^{2}+y^{2}-2 x+2 y-47=0$