we have given circle $x^{2}+y^{2}=4$. so, $r=2$. So, radius will be $2$.
we have given circle we know that, Perpendicular from center i.e. $OM$ bisects the chord $A B$. $\therefore \angle O A M=45{\circ}$ $\therefore \sin 45^{\circ}=\frac{O M}{A M}$ $\Rightarrow O M=\sin 45^{\circ} \cdot A M$ $\Rightarrow O M=\frac{1}{\sqrt{2}} \times 2$ (AM is radius) $\Rightarrow O M=\sqrt{2}$ $\Rightarrow O M^{2}=2$ $\Rightarrow h^{2}+k^{2}=O M^{2}$ $\Rightarrow h^{2}+k^{2}=2$ Hence, the focus of $(h, k)$ is $x^{2}+y^{2}=2$.