sin4 x = sin2 x sin2 x
=(\(\frac{1-cos2x}{2}\))(\(\frac{1-cos2x}{2}\))
=\(\frac 14\)(1-cos2x)2
=\(\frac 14\)[1+cos22x-2cos2x]
=\(\frac 14\)[1+(\(\frac{1-cos4x}{2}\))-2cos2x]
=\(\frac 14\)[1+\(\frac 14\)+\(\frac 14\)cos4x-2cos2x]
=\(\frac 14\)[\(\frac 32\)+\(\frac 14\)cos4x-2cos2x]
∴ ∫sin4 x dx=\(\frac 14\) ∫\(\frac 32\)+\(\frac 12\)cos4x-2cos2x]dx
=\(\frac 14\)[\(\frac 32\)x+\(\frac 12\)(\(\frac{sin4x}{4}\))-2sin2x/2]+C
=\(\frac 18\)[3x+\(\frac{sin4x}{4}\)-2sin2x]+C
=\(\frac{3x}{8}\)-\(\frac 14\)sin2x+\(\frac {1}{32}\)sin4x+C
What is the Planning Process?
Given below is the list of the different methods of integration that are useful in simplifying integration problems:
If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:
∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C
Here f(x) is the first function and g(x) is the second function.
The formula to integrate rational functions of the form f(x)/g(x) is:
∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx
where
f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and
g(x) = q(x).s(x)
Hence the formula for integration using the substitution method becomes:
∫g(f(x)) dx = ∫g(u)/h(u) du
This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,
∫g'(f(x)) f'(x) dx = g(f(x)) + C