Given that \(\Delta ABC\) is equilateral, the orthocenter and centroid coincide.
The coordinates of the centroid \(G\) are:
\(G = \left(\frac{5}{3}, \frac{5}{3}, \frac{5}{3}\right).\)
Considering point \(A(2, 2, 1)\), point \(B(1, 2, 2)\), and point \(C(2, 1, 2)\), the midpoint \(D\) of side \(AB\) is calculated as:
\(D = \left(\frac{3}{2}, 2, \frac{3}{2}\right).\)
To find the lengths of perpendiculars from \(G\) to the sides, we use the distance formula:
\(\ell_1 = \sqrt{\frac{1}{36} + \frac{1}{9} + \frac{1}{36}} = \frac{1}{\sqrt{6}}.\)
Since the triangle is equilateral, we have:
\(\ell_1 = \ell_2 = \ell_3 = \frac{1}{\sqrt{6}}.\)
The sum of the squares of these perpendicular lengths is:
\(\ell_1^2 + \ell_2^2 + \ell_3^2 = \left(\frac{1}{\sqrt{6}}\right)^2 + \left(\frac{1}{\sqrt{6}}\right)^2 + \left(\frac{1}{\sqrt{6}}\right)^2.\)
Simplifying:
\(\ell_1^2 + \ell_2^2 + \ell_3^2 = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}.\)
The Correct answer is: \( \frac{1}{2} \)
Let \( \vec{a} = 3\hat{i} + \hat{j} - 2\hat{k} \), \( \vec{b} = 4\hat{i} + \hat{j} + 7\hat{k} \), and \( \vec{c} = \hat{i} - 3\hat{j} + 4\hat{k} \) be three vectors.
If a vector \( \vec{p} \) satisfies \( \vec{p} \times \vec{b} = \vec{c} \times \vec{b} \) and \( \vec{p} \cdot \vec{a} = 0 \), then \( \vec{p} \cdot (\hat{i} - \hat{j} - \hat{k}) \) is equal to