\(\text{ The energy required to produce a hole is } 50 \, \text{meV} = 50 \times 10^{-3} \, \text{eV} = 8.0 \times 10^{-21} \, \text{J}.\\\)
\(\text{The wavelength corresponding to this energy is given by:}\)
\(E = \frac{hc}{\lambda} \implies \lambda = \frac{hc}{E}\)
\(\text{Substitute } h = 6.626 \times 10^{-34} \, \text{J.s}, \, c = 3 \times 10^8 \, \text{m/s}, \text{ and } E = 8.0 \times 10^{-21} \, \text{J}:\)
\[\lambda = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{8.0 \times 10^{-21}} = 2.48 \times 10^{-5} \, \text{m}\]