The formula for EMI is:
\[ EMI = \frac{P \cdot r \cdot (1 + r)^n}{(1 + r)^n - 1}, \]where:
\(P = 10,25,000 - 4,00,000 = 6,25,000\), \(r = \frac{12}{100 \times 12} = 0.01\), \(n = 36 \text{ (months)}\).
Substitute the values:
\[ EMI = \frac{6,25,000 \cdot 0.01 \cdot (1.01)^{36}}{(1.01)^{36} - 1}. \]Using \((1.01)^{36} = 1.7\):
\[ EMI = \frac{6,25,000 \cdot 0.01 \cdot 1.7}{1.7 - 1} = \frac{6,250 \cdot 1.7}{0.7}. \]Simplify:
\[ EMI = \frac{10,625}{0.7} = 25,708.89. \]Thus, the EMI is Rs. 25,708.89.